Exercises

Exercise 1. Proof Lemma 1.1: For all $x, y \in V$ we have $x \wedge y=-y \wedge x$.
Exercise 2. Check that the vectors v_{1}, \ldots, v_{k} are linearly dependent if and only if $v_{1} \wedge \cdots \wedge v_{k}=0$.
Exercise 3. Prove Lemma 1.4: Let $x=v_{1} \wedge \cdots \wedge v_{k} \in \Lambda^{k}(V)$ be decomposable, M as above. Then we have

$$
p_{i_{1}, \ldots, i_{k}}(x)=\triangle_{i_{1}, \ldots, i_{k}}^{1,2, \ldots, k}(M) .
$$

Hint: use the expansion of the v_{i} in terms of e_{1}, \ldots, e_{n}.
Exercise 4. Write the Plücker relations for $\operatorname{Gr}(2,5)$.
Exercise 5. Check the following: For $k=2$, the Plücker relations are

$$
p_{i, j_{0}} p_{j_{1}, j_{2}}-p_{i, j_{1}} p_{j_{0}, j_{2}}+p_{i, j_{2}} p_{j_{0} . j_{1}}
$$

where $1 \leq i \leq n, 1 \leq j_{0}<j_{1}<j_{2} \leq n$. We can rewrite these as

$$
p_{a b} p_{c d}-p_{a c} p_{b d}+p_{a d} p_{b c} \quad \text { for all } a, b, c, d \text { with } 1 \leq a<b<c<d \leq n
$$

Exercise 6. Find Q_{T} for the triangulation T given by the diagonals $(13),(35),(36),(16),(17)$ of an octagon.

Exercise 7. Draw the $\sigma_{2,8}$-diagram D for the triangulation T from Exercise 6. Compare the two quivers Q_{T} and $Q(D)$.

Exercise 8. Find a triangulation T such that $Q(T)$ as defined in Example 2.3(b) is the dimer of Example 2.2.

Exercise 9. Any two unit cycles at a vertex of a dimer model Q commute. Why is this?

Exercise 10. Find the Postnikov diagram for the dimer model above. Determine its permutation.
Exercise 11. Show that $\operatorname{Hom}_{M}\left(\mathbb{M}_{I}, \mathbb{M}_{J}\right) \cong \mathbb{C}[|t|]$ for all I, J.

Example Let $n=6, k=3$. So $J_{3,6}$ is as follows:

$$
\begin{gathered}
\beta \\
\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{5}
\end{gathered}
$$

Let $I=\{1,3,5\}$ and $J=\{2,4,6\}$.

1. $M:=\mathbb{M}_{I}: \underline{a}=(1,0,1,0,1,0)$ and $\varphi(M)=\beta+\alpha_{2}+\alpha_{3}+\alpha_{4}$.
2. Let $M=\mathbb{M}_{I} / \mathbb{M}_{J}$. Then $\underline{a}=(1,1,1,1,1,1)$ which corresponds to $2 \beta+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}$, the highest root for E_{6}.

Exercise 12. Compute $\varphi(M)$ for $M=\mathbb{M}_{J}$ and for $M=\mathbb{M}_{J} / \mathbb{M}_{I}$ where \mathbb{M}_{I} and \mathbb{M}_{J} are as in the example above.

Exercise 13. Find $\varphi\left(\mathbb{M}_{I} / \mathbb{M}_{J}\right)$ for I, J as in Example 3.21 (or 3.20). Compute $q\left(\underline{a}\left(\mathbb{M}_{I} / \mathbb{M}_{J}\right)\right)$.

Define matrices

$$
\begin{aligned}
A_{1}:=\left(\begin{array}{cc}
t & -2 \\
0 & 1
\end{array}\right) & B_{1}:=\left(\begin{array}{cc}
t & 0 \\
0 & 1
\end{array}\right)
\end{aligned} \quad C_{1}:=\left(\begin{array}{cc}
t & -1 \\
0 & 1
\end{array}\right) \quad D_{1}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Definition 3.24 (or 3.23)

Let I, J be strictly 3 -interlacing k-subsets of $[n]$. At the vertices of $\Gamma_{n}, \mathbb{M}(I, J)$ has the V_{1}, \ldots, V_{n}. We define the maps x_{i}, y_{i} as follows:

$$
x_{i}: V_{i-1} \rightarrow V_{i} \text { acts as }\left\{\begin{array} { l l }
{ A _ { 1 } } & { \text { if } i = a _ { 1 } } \\
{ B _ { 2 } } & { \text { if } i = b _ { 1 } } \\
{ B _ { 1 } } & { \text { if } i = a _ { 2 } } \\
{ C _ { 2 } } & { \text { if } i = b _ { 2 } } \\
{ C _ { 1 } } & { \text { if } i = a _ { 3 } } \\
{ A _ { 2 } } & { \text { if } i = b _ { 3 } } \\
{ D _ { 1 } } & { \text { if } i \in I \cap J } \\
{ D _ { 2 } } & { \text { if } i \in I ^ { c } \cap J ^ { c } }
\end{array} \quad y _ { i } : V _ { i } \rightarrow V _ { i - 1 } \text { acts as } \left\{\begin{array}{ll}
A_{2} & \text { if } i=a_{1} \\
B_{1} & \text { if } i=b_{1} \\
B_{2} & \text { if } i=a_{2} \\
C_{1} & \text { if } i=b_{2} \\
C_{2} & \text { if } i=a_{3} \\
A_{1} & \text { if } i=b_{3} \\
D_{2} & \text { if } i \in I \cap J \\
D_{1} & \text { if } i \in I^{c} \cap J^{c}
\end{array}\right.\right.
$$

Exercise 14. Check that the module $\mathbb{M}(I, J)$ from the above definition is in $\mathcal{F}_{k, n}$. For this, check that $x y=y x$ and $x^{k}=y^{n-k}$ at all vertices (hence is a B-module) and that $\mathbb{M}(I, J)$ is free over the centre.

