
Exercises

Exercise 1. Proof Lemma 1.1: For all x, y ∈ V we have x ∧ y = −y ∧ x.

Exercise 2. Check that the vectors v1, . . . , vk are linearly dependent if and only if v1 ∧ · · · ∧ vk = 0.

Exercise 3. Prove Lemma 1.4: Let x = v1 ∧ · · · ∧ vk ∈ Λk(V ) be decomposable, M as above. Then
we have

pi1,...,ik(x) = △1,2,...,k
i1,...,ik

(M).

Hint: use the expansion of the vi in terms of e1, . . . , en.

Exercise 4. Write the Plücker relations for Gr(2, 5).

Exercise 5. Check the following: For k = 2, the Plücker relations are

pi,j0pj1,j2 − pi,j1pj0,j2 + pi,j2pj0.j1

where 1 ≤ i ≤ n, 1 ≤ j0 < j1 < j2 ≤ n. We can rewrite these as

pabpcd − pacpbd + padpbc for all a, b, c, d with 1 ≤ a < b < c < d ≤ n

Exercise 6. Find QT for the triangulation T given by the diagonals (13), (35), (36), (16), (17) of an
octagon.
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Exercise 7. Draw the σ2,8-diagramD for the triangulation T from Exercise 6. Compare the two quivers
QT and Q(D).

Exercise 8. Find a triangulation T such that Q(T ) as defined in Example 2.3(b) is the dimer of
Example 2.2.

Exercise 9. Any two unit cycles at a vertex of a dimer model Q commute. Why is this?
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Exercise 10. Find the Postnikov diagram for the dimer model above. Determine its permutation.

Exercise 11. Show that HomM (MI ,MJ) ∼= C[|t|] for all I, J .
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Example Let n = 6, k = 3. So J3,6 is as follows:

β

α1 α2 α3 α4 α5

Let I = {1, 3, 5} and J = {2, 4, 6}.

1. M := MI : a = (1, 0, 1, 0, 1, 0) and ϕ(M) = β + α2 + α3 + α4.

2. LetM = MI /MJ . Then a = (1, 1, 1, 1, 1, 1)which corresponds to 2β+α1+2α2+3α3+2α4+α5,
the highest root for E6.

Exercise 12. Compute ϕ(M) for M = MJ and for M = MJ /MI where MI and MJ are as in the
example above.

Exercise 13. Find ϕ(MI /MJ) for I, J as in Example 3.21 (or 3.20). Compute q(a(MI /MJ )).
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Define matrices

A1 :=

Å

t −2
0 1

ã

B1 :=

Å

t 0
0 1

ã

C1 :=

Å

t −1
0 1

ã

D1 :=

Å

1 0
0 1

ã

A2 :=

Å

1 2
0 t

ã

B2 :=

Å

1 0
0 t

ã

C2 :=

Å

1 1
0 t

ã

D2 :=

Å

t 0
0 t

ã

.

Definition 3.24 (or 3.23)
Let I, J be strictly 3-interlacing k-subsets of [n]. At the vertices of Γn, M(I, J) has the V1, . . . , Vn.
We define the maps xi, yi as follows:

xi : Vi−1 → Vi acts as


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
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
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



















A1 if i = a1
B2 if i = b1
B1 if i = a2
C2 if i = b2
C1 if i = a3
A2 if i = b3
D1 if i ∈ I ∩ J
D2 if i ∈ Ic ∩ Jc

yi : Vi → Vi−1 acts as















































A2 if i = a1
B1 if i = b1
B2 if i = a2
C1 if i = b2
C2 if i = a3
A1 if i = b3
D2 if i ∈ I ∩ J
D1 if i ∈ Ic ∩ Jc

Exercise 14. Check that the module M(I, J) from the above definition is in Fk,n. For this, check that
xy = yx and xk = yn−k at all vertices (hence is a B-module) and that M(I, J) is free over the centre.
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