Exercises

Exercise 1. Proof Lemma 1.1: For all $x, y \in V$ we have $x \wedge y = -y \wedge x$.

Exercise 2. Check that the vectors v_1, \ldots, v_k are linearly dependent if and only if $v_1 \wedge \cdots \wedge v_k = 0$.

Exercise 3. Prove Lemma 1.4: Let $x = v_1 \wedge \cdots \wedge v_k \in \Lambda^k(V)$ be decomposable, M as above. Then we have

$$p_{i_1,\ldots,i_k}(x) = \triangle_{i_1,\ldots,i_k}^{1,2,\ldots,k}(M)$$

Hint: use the expansion of the v_i in terms of e_1, \ldots, e_n .

Exercise 4. Write the Plücker relations for Gr(2,5).

Exercise 5. Check the following: For k = 2, the Plücker relations are

$$p_{i,j_0}p_{j_1,j_2} - p_{i,j_1}p_{j_0,j_2} + p_{i,j_2}p_{j_0,j_1}$$

where $1 \le i \le n$, $1 \le j_0 < j_1 < j_2 \le n$. We can rewrite these as

 $p_{ab}p_{cd} - p_{ac}p_{bd} + p_{ad}p_{bc} \quad \text{for all } a, b, c, d \text{ with } 1 \leq a < b < c < d \leq n$

Exercise 6. Find Q_T for the triangulation T given by the diagonals (13), (35), (36), (16), (17) of an octagon.

Exercise 7. Draw the $\sigma_{2,8}$ -diagram D for the triangulation T from Exercise 6. Compare the two quivers Q_T and Q(D).

Exercise 8. Find a triangulation T such that Q(T) as defined in Example 2.3(b) is the dimer of Example 2.2.

Exercise 9. Any two unit cycles at a vertex of a dimer model Q commute. Why is this?

Exercise 10. Find the Postnikov diagram for the dimer model above. Determine its permutation. **Exercise 11.** Show that $\text{Hom}_M(\mathbb{M}_I, \mathbb{M}_J) \cong \mathbb{C}[|t|]$ for all I, J.

Example Let n = 6, k = 3. So $J_{3,6}$ is as follows:

$$\begin{array}{c} \beta \\ \alpha_1 - \alpha_2 - \alpha_3 - \alpha_4 - \alpha_5 \end{array}$$

Let $I = \{1, 3, 5\}$ and $J = \{2, 4, 6\}$.

- 1. $M := \mathbb{M}_I: \underline{a} = (1, 0, 1, 0, 1, 0) \text{ and } \varphi(M) = \beta + \alpha_2 + \alpha_3 + \alpha_4.$
- 2. Let $M = M_I / M_J$. Then $\underline{a} = (1, 1, 1, 1, 1, 1)$ which corresponds to $2\beta + \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5$, the highest root for E_6 .

Exercise 12. Compute $\varphi(M)$ for $M = \mathbb{M}_J$ and for $M = \mathbb{M}_J / \mathbb{M}_I$ where \mathbb{M}_I and \mathbb{M}_J are as in the example above.

Exercise 13. Find $\varphi(\mathbb{M}_I / \mathbb{M}_J)$ for I, J as in Example 3.21 (or 3.20). Compute $q(\underline{a}(\mathbb{M}_I / \mathbb{M}_J))$.

Define matrices

$$A_{1} := \begin{pmatrix} t & -2 \\ 0 & 1 \end{pmatrix} \quad B_{1} := \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \quad C_{1} := \begin{pmatrix} t & -1 \\ 0 & 1 \end{pmatrix} \quad D_{1} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$A_{2} := \begin{pmatrix} 1 & 2 \\ 0 & t \end{pmatrix} \quad B_{2} := \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix} \quad C_{2} := \begin{pmatrix} 1 & 1 \\ 0 & t \end{pmatrix} \quad D_{2} := \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix}.$$

Definition 3.24 (or 3.23)

Let I, J be strictly 3-interlacing k-subsets of [n]. At the vertices of Γ_n , $\mathbb{M}(I, J)$ has the V_1, \ldots, V_n . We define the maps x_i, y_i as follows:

$$x_{i}: V_{i-1} \to V_{i} \text{ acts as} \begin{cases} A_{1} & \text{if } i = a_{1} \\ B_{2} & \text{if } i = b_{1} \\ B_{1} & \text{if } i = a_{2} \\ C_{2} & \text{if } i = b_{2} \\ C_{1} & \text{if } i = a_{3} \\ A_{2} & \text{if } i = b_{3} \\ D_{1} & \text{if } i \in I \cap J \\ D_{2} & \text{if } i \in I^{c} \cap J^{c} \end{cases} y_{i}: V_{i} \to V_{i-1} \text{ acts as} \begin{cases} A_{2} & \text{if } i = a_{1} \\ B_{1} & \text{if } i = b_{1} \\ B_{2} & \text{if } i = b_{1} \\ B_{2} & \text{if } i = b_{2} \\ C_{1} & \text{if } i = b_{2} \\ C_{2} & \text{if } i = b_{3} \\ D_{2} & \text{if } i \in I \cap J \\ D_{1} & \text{if } i \in I \cap J \\ D_{1} & \text{if } i \in I^{c} \cap J^{c} \end{cases}$$

Exercise 14. Check that the module $\mathbb{M}(I, J)$ from the above definition is in $\mathcal{F}_{k,n}$. For this, check that xy = yx and $x^k = y^{n-k}$ at all vertices (hence is a *B*-module) and that $\mathbb{M}(I, J)$ is free over the centre.