
CIMPA EXERCISES

DAVID JORDAN

My hope for this course is not to lecture everything that is in the notes I have shared. This
is way too much to cover in 4.5 hours of lectures. Instead, I want to give you an overview of the
results, and set you up to read the book at your own pace. These exercises will allow you to start
that process during the two tutorial sessions, and I will spend lecture explaining how the different
pieces fit together.

1. Classical representation theory of SL2

Some of you will have already worked through the representation theory of SL2, some of you
will not yet have done so. To put us on the same page, the first exercise has you check your
understanding of Chapter 1 of the notes. These exercises are all solved in the first chapter of the
notes. Please think through them as long as they are useful practice, and consult the notes when
you are satisfied and want to check your understanding.

If all solutions are familiar to you already, then please instead skip to Section 2, which includes
repeating the exercises for the quantum group.

(1) Classify the irreducible finite-dimensional representations of SL2.

(a) Choose an eigenvector v for H of largest real component λ. This is called the highest
weight of the representation.

(b) Show that Ev = 0, and that F kv = 0 for some k.
(c) Show by induction that HFmv = (λ− 2m)Fmv for all m.
(d) Show that EFmv = (λ+ 1−m)Fm−1v, for all m.
(e) Conclude that λ is an integer (!). Denote by V (λ) the unique up to isomorphism

finite-dimensional representation with highest weight λ which was constructed above.
Show that it has dimension λ+ 1.

Conclude that for each integer λ there exists a unique irreducible SL2-representation V (λ)
with highest weight k, and that every irreducible finite-dimensional SL2-representation is
of this form.

Remark 1. For a general simple group G, there is a similar classification of finite-dimensional
irreducible representations V (λ) according to a highest weight λ. This is no longer an inte-
ger, but rather a tuple of r integers indexing the simultaneous eigenvalues for a distinguished
basis H1, . . . ,Hr of generators of the Cartan subalgebra T of G (or more invariantly an el-
ement of a “weight lattice”, Hom(T,C×)).

(2) Compute the character of a finite-dimensional representation. Given a finite-
dimensional SL2-representation V and an integer µ, let Vµ denote the subspace of V on
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which H acts with weight µ. Let ch(V ) =
∑

xk dim(Vk). Show that

ch(V (λ)) = xλ + xλ−2 + · · ·+ x2−λ + x−λ =
xλ+1 − x−λ−1

x− x−1
,

and in particular that its dimension is λ+ 1.

Remark 2. For a general group G with irreducible module V (λ), the analogous formula for
its character and dimension are called the Weyl character and Weyl dimension formulas,
respectively.

(3) Determine the center of U(sl2).

(a) Show by direct computation that the element C = EF + FE + 1
2H

2 is central.
(b) For now, assume the PBW theorem: a basis for U(sl2) consists of all ordered mono-

mials, EkH lFm, for non-negative integers k, l,m.
(c) Conclude that the powers Ck for all k are linearly independent.
(d) Show that the associated graded of U(sl2) is isomorphic to

Sym(V ) =
⊕
k

Symk(V (2)).

(e) Consider the action of H on Sym(V (2)). Show its graded character is given by the
power series expansion in t of

1

(1− tx−2)(1− t)(1− tx2)
,

where the coefficient of tk is the character of SymkV (2).

Conclude that the graded dimension of (Sym(V (2)))sl2 is 1
1−t2 , and hence that the Casimir

C generates the centre of U(sl2). (Hint: by the character formula above, you only need to
compute the x coefficient of

x− x−1

(1− tx−2)(1− t)(1− tx2)
,

as a power series in t.

Remark 3. For a general simple group G, we have the Chevalley isomorphism,

Z(U(g)) ∼= U(g)g ∼= Sym(h)W ,

which identifies the center of the universal enveloping algebra with the W -invariant polyno-
mials functions on h∗.

(4) Show that every finite-dimensional U(sl2)-representation is a direct sum of irre-
ducible representations.

(a) Show that C acts on V (λ) by the scalar cλ = λ(λ+2)
2 .

(b) Let V be an arbitrary representation. Let V [λ] denote the subspace on which C acts
by cλ. Give a decomposition,

V =

∞⊕
k=0

V [λ].
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(c) Show that the category is semisimple, i.e. that every representation is a direct sum of
simples. (This is hard, I suggest reading the notes together in a group).

Remark 4. This theorem holds as stated for any simple algebraic group G.

(5) Produce an isomorphism O(SL2)
SL2 ∼= O(H)Z/2, where Z/2 acts on H by inversion. Hint:

while it’s not quite true that every matrix can be diagonalised, show that every matrix sits
arbitrarily close to a diagonal matrix, so that a G-invariant algebraic function on SL2 is
uniquely determined by its values on the diagonalisable matrices.

Remark 5. This statement and line of proof generalises to an arbitrary reductive group,
giving:

O(G)G ∼= O(H)W .

2. Quantum representation theory of SL2

These exercises are intended to introduce you the students to the representation theory of the
quantum group. The presentation is somewhat non-standard. So I hope it will be interesting even
if you’ve already seen another construction of the quantum group. The main idea as you will
learn from the exercises is that the quantum group behaves very similarly to the classical universal
enveloping algebra.

Recall the quantum group Oq(SL2). It has generators a, b, c, d, with commutation relations:

da = ad ba = ab+ (1− q−2)bd

db = q2bd ca = ac+ (q−4 − q−2)cd

dc = q−2cd cb = q2bc+ (1− q−2)(1− d2)

and the quantum determinant relation,

ad− q2bc = 1.

(1) Show that the algebra Oq(G) is a deformation of both O(SL2) and U(sl2).

(a) Show that at q = 1 the relations become those of O(SL2) (this is easy).
(b) Consider the C[q, q−1]-subalgebra Ū generated by

Ē =
b

q − q−1
, F̄ =

c

q − q−1
, H̄ = (1− d2).

Show that at q = 1 this subalgebra becomes isomorphic to U(sl2).

Remark 6. Quantum groups can be defined in similar fashion for any simple group, and
they have the same property, that they can be degenerated to either the coordinate algebra
of the group or to the universal enveloping algebra.

Remark 7. The presentation given here for the quantum group is non-standard, and usually
another algebra called Uq(g) is dubbed the quantum group, or more accurately the quantum
universal enveloping algebra. The algebra Uq(sl2) is presented with generators E,F,K±1

subject to the quantum Serre relations:

(1) KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.
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Consider the algebra Oq(SL2)[d
−1], and let

E =
d−1b

q − q−1
, F =

c

q − q−1
, K = d.

(2) Prove that Oq(SL2)[d
−1] is generated by E,F,K,K−1, subject to the quantum

Serre relations (1).

Remark 8. This tells us that Uq(g) is not a quantization of the group G but of a 2-fold
cover open subset G◦ known as the “big cell”. This cover is known the Poisson-Lie dual
group G∗ := B+ ×T B−.

(3) Prove that trq = a+ q−2d is central, and that under the above isomorphism, maps to a
multiple of the quantum Caismir element,

Cq = EF +
Kq−1 +K−1q

(q − q−1)2
.

(4) Repeat exercises (1)-(4) from Section 1, but with Oq(G) in place of U(sl2).

3. Warm-ups in algebraic geometry

These exercises are intended to give you some sense of some of the ideas in algebraic geometry
even if you’ve never seen it before. As a bonus, these are really the only algebraic varieties we will
consider in this course, so if you can understand how these examples work, you can do geometric
representation theory for SL2!

(1) Show that C\S is affine, whenever S is a finite set. (Hint: the relation x · y = 1
spells out a curve in C2. Why is this relevant?)

(2) Show however that C2\{0} is not affine. Here 0 = (0, 0) ∈ C2. (Hint: what is the
algebra of polynomial functions on it, and why is that a problem?)

(3) Show that CP1 is not affine. (Hint: what is the algebra of polynomial functions on it,
and why is that a problem?)

(4) Determine the categories Coh{0}(C2) and CohC2\{0}(C2), of coherent sheaves sup-

ported at {0} in C2, and away from {0}, respectively.
The support of a module M over a commutative algebra A is the set of maximal ideals

I such that M/IM ̸= 0. The support of a sheaf F on some variety X is the union of its
supports as defined above with respect to some open cover by affine varieties.

(a) Show that a coherent sheaf F on C2 (regarded as a C[x, y]-module M) has support
{0} if, and only if, for all m ∈ M , there exists a, b such that xam = ybn = 0. These
are called torsion sheaves, and denoted Torsion.
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(b) Show that torsion sheaves form a Serre subcategory: they are an abelian subcategory
and are moreover closed under short exact sequences.

(c) Produce equivalences of categories,

Coh(C2\{0}) ≃ CohC2\{0}(C2) ≃ C[x, y]-mod/Torsion.

4. Peter-Weyl and Borel-Weil

Okay, now let’s apply our insights to prove two out of the three theorems in this course: the
Peter-Weyl theorem, and its easy corollary, the Borel-Weil theorem.

Given a finite-dimensional representation V of U(sl2), and elements v ∈ V and f ∈ V ∗ , define
the matrix coefficient cf,v to be the linear functional,

cf,v :U(sl2) → C,
X 7→ f(Xv).

Let O denote the subspace of U(sl2) spanned by the cf,v for all V , for all v ∈ V and f ∈ V ∗. His
has an algebra structure via cf,v · cg,w = cg⊗f,v⊗w. We will now produce an isomorphism of algebra
O ∼= O(SL2).

We obtain a homomorphism V ∗⊗V → O(SL2) of U(sl2)⊗U(sl2)-modules by sending f⊗v 7→ cf,v.

(1) Construct an isomorphism between O(SL2) and the abstractly defined algebra
O of matrix coefficients on U(sl2).

Denote the standard basis of V (1) by v1, v2, and the dual basis f1, f2. Abbreviate by cij
the matrix coeffcient cfi,vj .

(a) Show that there exists a unique homomorphism:

ϕ : C[a, b, c, d] → O,

(a, b, c, d) 7→ (c11, c
1
2, c

2
1, c

2
2).

Hint: you need to check that matrix coefficients form a commutative algebra (why?).

(b) Show that the relations cf,i0(v) = cπ0(f),v, for f = v1, v2 and v = v1, v2, reduce to the
single relation ad− bc = 1 (this is kind of hard/detailed).

(c) The algebra O(SL2) = C[a, b, c, d]/⟨ad − bc − 1⟩ admits a filtration with generators
a, b, c, d in degree one. Let Fi denote the ith filtration, and show that Fi/Fi−1 has a
basis:

Bi = {akdlcm | k + l +m = i} ∪ {akdlbm | k + l +m = i},

so that dimFi/Fi+1 = |Bi| = 2
(
i+2
2

)
− (i+ 1) = (i+ 1)2.
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(d) Show that ϕ is a map of filtered vector spaces, where1

Fi(O) = ⊕k≤iV (k)∗ ⊠ V (k).

(e) Conclude that ϕ is injective. Using that V (k)∗ ⊠ V (k) is irreducible, conclude that ϕ
is also surjective, and thus an isomorphism of algebras.

You have proved the Peter-Weyl theorem: you have constructed an isomorphism,

O(SL2) ∼= ⊕λV (λ)∗ ⊠ V (λ)

(2) Classify all line bundles on CP1: Show that every line bundle is of the form O(λ) for
some integer λ, in two different ways:

(a) A line bundle on CP1 is glued out of two line bundles on C. Using that C[x] is a PID,
it is possible to show that the only line bundle is the trivial one (you may assume this
fact without proof). What are the possible transition maps on the intersection C×?

(b) A line bundle on CP1 may also be understood as a C×-equivariant vector bundle on
C2\{0}, or in other words a free, graded, C[x, y]-module. Show that every such module
is just a copy of C[x, y] shifted into some degree λ.

(3) Describe the category Coh(CP1) explicitly. Building on Exercise 4 (d), produce an
equivalence of categories,

Coh(CP1) ≃ (graded C[x, y]-modules)/Torsion

(4) Prove that for λ ≥ 0, we have dimΓ(CP1,O(λ)) = λ + 1. Prove this in two different
ways, according to the two different classifications of line bundles on CP1 given above.

(5) Use the Peter-Weyl theorem to prove the Borel-Weil theorem. Give an isomor-
phism, Γ(CP1,O(λ)) ∼= V (λ). Here, we regard a line bundle on CP1 as a B-equivariant line
bundle on G, so that Γ(CP1,O(λ)) obtains a G-action by left multiplication.

1the symbol ⊠ denotes the usual tensor product ⊗ of vector spaces, but where the two copies of U(sl2) act
independently on each factor.


