
Gentle introduction to Soergel bimodules I:
The basics

NICOLAS LIBEDINSKY

Abstract This paper is the first of a series of introductory papers on the
fascinating world of Soergel bimodules. It is combinatorial in nature and
should be accessible to a broad audience. The objective of this paper is to
help the reader feel comfortable calculating with Soergel bimodules and
to explain some of the important open problems in the field. The motiva-
tions, history and relations to other fields will be developed in subsequent
papers of this series.

1 Introduction

1.1 Declaration of intent

As said in the abstract, this paper is an introduction to Soergel bimodules.
We give many examples and show explicit calculations with the Hecke alge-
bra and the Hecke category (one of its incarnations being Soergel bimodules).
Most of the other Hecke categories (categorifications of the Hecke algebra)
such as category O , Elias-Williamson diagrammatic category, Sheaves on mo-
ment graphs, 2-braid groups and Parity Sheaves over Schubert varieties, are
left for follow-ups of this paper. The applications of this theory are also left for
the follow-ups.

Soergel bimodules were introduced by Wolfgang Soergel [So2] in the year 92’,
although many of the ideas were already present in his 90’ paper [So1]. In
those papers he explained its relations to representations of Lie groups. In the
year 00’ he proved [So4] a link between them (at that time he called them “Spe-
cial bimodules”, and although they are quite special, apparently they are more
Soergel than special) and representations of algebraic groups in positive char-
acteristic that proved to be extremely deep. In his 07’ paper [So5] he simplified
many arguments and proved some new things. After this paper...

WARNING: The following section is just intended to impress the reader.
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1.2 ...Bum! Explosion of the field

Soergel bimodules were (and are) in the heart of an explosion of new discover-
ies in representation theory, algebraic combinatorics, algebraic geometry and
knot theory. We give a list of some results obtained using Soergel bimodules
in the last five years.

(1) Algebraic groups: A disproof of Lusztig’s conjecture predicting the sim-
ple characters of reductive algebraic groups (1980). This was probably
the most important open conjecture in representation theory of Lie-type
objects.

(2) Lie algebras: An algebraic proof of Kazhdan-Lusztig conjectures pre-
dicting the multiplicities of simple modules in Verma modules (1979)
for complex semi-simple Lie algebras. A geometric proof was given in
the early 80’s, but we had to wait 35 years to have an algebraic proof of
an algebraic problem.

(3) Symmetric groups: A disproof of James conjecture predicting the char-
acters of irreducible modular representations for the symmetric group
(1990).

(4) Combinatorics: A proof of the conjecture about the positivity of the coef-
ficients of Kazhdan-Lusztig polynomials for any Coxeter system (1979).
This was a major open combinatorial problem.

(5) Algebraic geometry: A disproof of the Borho-Brylinski and Joseph char-
acteristic cycles conjecture (1984).

(6) Combinatorics: A proof of the positivity of parabolic Kazhdan-Lusztig
polynomials for any Coxeter system and any parabolic group.

(7) Knot theory: A categorification of Jones polynomials and HOMFLYPT
polynomials.

(8) Higher representation theory: A disproof of the analogue for KLR alge-
bras of James conjecture, by Kleschev and Ram (2011).

(9) Lie algebras: An algebraic proof of Jantzen’s conjecture about the Jantzen
filtration in Lie algebras (1979).

(10) Combinatorics A proof of the Monontonicity conjecture (1985 aprox.)

(11) Combinatorics: A proof of the Unimodality of structure constants in
Kazhdan-Lusztig theory.

We will start this story by the first of three levels, the classical one.
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2 Classical level: Coxeter systems

2.1 Some definitions

A Coxeter matrix is a symmetric matrix with entries in {1, 2, . . .} ∪ {∞}, diago-
nal entries 1 and off-diagonal entries at least 2.

Definition 1 A pair (W,S), where W is a group and S is a finite subset of
W, is called a Coxeter system if W admits a presentation by generators and
relations given by

〈s ∈ S | (sr)msr = e if s, r ∈ S and msr is finite〉,
where (msr)s,r∈S is a Coxeter matrix and e is the identity element.

We then say that W is a Coxeter group. One can prove that in the Coxeter
system defined above, the order of the element sr is msr (it is obvious that it
divides msr ). The rank of the Coxeter system is the cardinality of S . If s 6= r,
the relation (sr)msr = e is equivalent to

srs · · ·︸ ︷︷ ︸
msr

= rsr · · ·︸ ︷︷ ︸
msr

This is called a braid relation. On the other hand, as mss = 1, we have that
s2 = e. This is called a quadratic relation. An expression of an element x ∈ W ,
is a tuple x = (s, r, . . . , t) with s, r, . . . , t ∈ S such that x = sr · · · t. The
expression is reduced if the length of the tuple is minimal. We denote l(x) this
length.

2.2 Baby examples

We start with two baby examples of Coxeter systems. In these two cases (as
well as in examples (C) and (D)) we will calculate explicitly the two key ob-
jects in the theory, namely the Kazhdan-Lusztig basis and the indecomposable
Soergel bimodules.
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(A) The group Symm(∆) of symmetries of an equilateral triangle is isomor-
phic to the group with 6 elements

〈s, r | s2 = r2 = e, srs = rsr〉.

One possible isomorphism is given by the map

(B) The group Symm(�) of symmetries of a square is isomorphic to the group
with 8 elements

〈s, r | s2 = r2 = e, srsr = rsrs〉.

One isomorphism between these groups is given by

2.3 Generalizing the baby examples: (infinite) regular polygons

One natural way to generalize the baby examples is to consider the symmetries
of a regular n-sided polygon. This is also a finite Coxeter group denoted I2(n)
(the subindex 2 in this notation denotes the rank of the Coxeter system, as
defined in Section 2.1). A presentation of this group is given by

(C) I2(n) = 〈s, r | s2 = r2 = e, (sr)n = e〉,
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so Symm(∆) ∼= I2(3) and Symm(�) ∼= I2(4). Again, one isomorphism here is
given by sending s to some reflection and r to any of the “closest reflections
to it”

Figure 1: Example with n = 8

What is the Infinite regular polygon, the “limit” in n of the groups I2(n)? A
reasonable way to search for a geometric limit of the sequence of n−sided
regular polygons, is to picture this sequence having “the same size” as in the
figure

Figure 2: The incorrect mental image

If we do so, the (pointwise) limit is a circle. On the other hand, the limit when
n goes to infinity of I2(n) is algebraically clear if we consider the presentation
given in Example (C). It is the infinite group

U2 = 〈s, r | s2 = r2 = e〉.

But the geometric and algebraic descriptions given here do not coincide! The
group Symm(©) of symmetries of the circle (usually called the orthogonal
group O(2)) is not even finitely generated. We have passed to a continuous
group! The best we can do is to see U2 as a dense subgroup of Symm(©) (just
consider s and r to be two ”random” reflections of the circle).
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There is a beautiful way to solve this problem: there is a discrete geometric
limit of the sequence of n−sided regular polygons. Let us picture this se-
quence with one fixed side (in the figure, the darker one). Let us suppose that
the fixed side has vertices in the points (0, 0) and (0, 1) of the plane.

Figure 3: A new sequence

Then, if we make a “close up” around the darker side, and we put all the
polygons together, we see

Figure 4: The figure opens like flower

The (pointwise) limit is R with the vertices converging to the set Z. The sym-
metries of this geometric object (that we call (R,Z)) is isomorphic to U2 ! One
isomorphism is given by sending s to the reflection through 0 and r to the re-
flection through 1/2 (again “the closest reflection”). Now our geometric limit
and the algebraic limit coincide and we can regain our lost calm.

For our fourth example, we just just raise the rank of U2 .

(D) The Universal Coxeter system of rank n is the group

Un = 〈s1, s2, . . . , sn | s21 = s22 = · · · = s2n = e〉

This is the most complicated family of groups in which one can still compute
all of the Kazhdan-Lusztig theory explicitly.
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2.4 Generalizing the baby examples: tesselations

We will denote by [n, p, q] the Coxeter system with simple reflections S =
{s, r, t} and with Coxeter matrix given by msr = n,mst = p and mrt = q.

2.4.1 Tesselations of the Euclidean plane

A natural way to generalize the equilateral triangle is to consider the following
tesselation of the Euclidean plane by equilateral triangles

Figure 5: [6,3,2]

This tesselation can be generalized by coloring this tiling as in Figure 6 or by
tiling the plane with other (maybe colored) regular convex polygons as it is the
checkboard of Figure 7 or the honeycomb of Figure 8.

Figure 6: [3,3,3] Figure 7: [4,4,2] Figure 8: [6,3,2]

Note the (curious?) equalities obtained by adding the corresponding inverses
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of n, p and q in the last figures:

1

3
+

1

3
+

1

3
=

1

4
+

1

4
+

1

2
=

1

6
+

1

3
+

1

2
= 1

2.4.2 Tesselations of the hyperbolic plane

It is quite fantastic the amount of tesselations by triangles of the hyperbolic
plane. Here we give some examples using the Poincaré disk model.

Figure 9: [7,3,2] Figure 10: [6,6,6] Figure 11: [∞,∞,∞, ]

Figure 10 is called by some (at least by me) “Devil’s tesselation”.

In general, there is a tesselation by triangles of the hyperbolic plane with group
of symmetries [n, p, q] if and only if

1

n
+

1

p
+

1

q
< 1. (1)

In particular, if n > 3 and p, q ≥ 3 then this inequality is satisfied. So most
rank three Coxeter groups are the group of symmetries of some hyperbolic
tiling. Those Coxeter groups which are not, are either the group of symmetries
of a tesselation by triangles of the Euclidean plane1 where inequality (1) is
changed by an equality or they are the group of symmetries of a tesselation by
triangles of the sphere like the following

1Essentially those that can be constructed from Figures 6, 7 and 8. The groups
of symmetries appearing in this fashion are just the three groups [3, 3, 3], [4, 4, 2] and
[6, 3, 2] .
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Figure 12: [2,3,3] Figure 13: [2,3,4] Figure 14: [2, 3, 5]

In the spherical case the reversed inequality is satisfied

1

n
+

1

p
+

1

q
> 1. (2)

so the triples [n, p, q] that appear here are the“little numbers” (we just need to
add to Figures 12, 13 and 14, the groups [2, 2, n] for n ≥ 2).

2.5 Generalizing the baby examples: more dimensions

If we raise the rank, we can generalize our baby examples in a different way.
We give the n-analogue of the baby examples.

(1) The Weyl group of type An−1 . It can be defined as the symmetries of an n-
simplex, or equivalently, as Sn , the symmetric group in n elements. The
isomorphism between these two groups is obvious. It admits a Coxeter
presentation given by generators si, 1 ≤ i < n and relations

• s2i = e for all i.
• sisj = sjsi if |i− j| ≥ 2

• sisjsi = sjsisj if |i− j| = 1 (i.e. i = j ± 1)

The isomorphism from this group to the symmetric group is given by
sending si to the transposition (i, i+ 1) ∈ Sn.

(2) The Weyl group of type BCn−1 . It is the group of symmetries of an n-
hypercube. It has order 2nn!

(3) More generally, all symmetry groups of regular polytopes are finite Cox-
eter groups. Dual polytopes have the same symmetry group.
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2.6 More examples

• Type A and type B groups are examples of Weyl groups. These groups
appear in the theory of Lie algebras as the groups of symmetries of root
systems associated to semisimple Lie algebras over the complex num-
bers (so they are examples of finite reflection groups). There are three
infinite families of Weyl groups, types An, BCn and Dn (n ∈ N) and the
exeptional groups of type E6 , E7, E8, F4, G2 . They are also symmetry
groups of regular or semiregular polytopes. For example, this figure is
a projection in the plane of an 8-dimensional semiregular polytope with
symmetry group E8

• The complete list of finite Coxeter groups is also known. Apart from
the Weyl groups there are the groups H2 (symmetries of pentagon), H3

10



(symmetries of the 3-pentagon, or dodecahedron), H4 (symmetries of
the 4-pentagon, or hecatonicosachoron, a polytope, not a dinosaur as
one may think), and also the infinite family I2(n) described above, al-
though some of them are repeated: I2(3) = A2, I2(4) = B2, I2(5) = H2

and I2(6) = G2 .

• The group U2 is an example of an Affine Weyl group, it is also called Ã1 .
These groups appear naturally in the study of representations of alge-
braic groups and they are semidirect products of a lattice and a Weyl
group. Their classification is almost the same as the one for Weyl groups.
The only difference is that the family of Weyl groups BCn gives rise
to two families of affine Weyl groups, B̃n and C̃n, while each of the
other Weyl groups, say An, Dn, E6, . . . give rise to one affine Weyl group,
namely Ãn, D̃n, Ẽ6, . . . These groups also appear as symmetry groups of
uniform tesselations.

• The Right-angled Coxeter groups are the ones for which msr is either 2
or ∞ for each s, r ∈ S. They are important groups in geometric group
theory.

• The Extra-large Coxeter groups are the ones for which msr ≥ 4 for each
s, r ∈ S. We saw lots of examples in section 2.4.2.

Personal philosophy of the author We consider the right-angled and the
extra-large Coxeter groups as extreme (and oposite) cases and Weyl groups as
being in the middle. Usually problems regarding Weyl groups are difficult to
grasp while the same problems regarding the two mentioned cases are easier
combinatorially and give light of the Weyl group case.

To learn more about Coxeter groups we advice the books [Hu], [BB] and [Da].

2.7 Bruhat order and an important property

One important concept about Coxeter systems is the Bruhat order. It is defined
by x ≤ y if some substring of some (or every) reduced word for y is a reduced
word for x.

For example, in the case of S3 , the Bruhat order is represented in the following
diagram
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We see that in this example, the only couples of non-comparable elements are
(s, r) and (sr, rs).

A beautiful and important property (proved by Hideya Matsumoto in 1964
[Ma]) about Coxeter systems is that, if x ∈ W , one can obtain any reduced
expression of x from any other, just by applying braid relations. Moreover,
if sx < x there is an expression of x that has s in the left, i.e. x admits an
expression of the form sr · · · t. Of course, if xs < x then there is an expression
of x that has s in the right.

3 Quantum level: Hecke algebras

3.1 Kazhdan-Lusztig’s theory

For the basic definitions of Hecke algebras and Kazhdan-Lusztig polynomials
we follow [So3]. Let (W,S) be a Coxeter system.

Definition 2 The Hecke algebra H of a Coxeter system (W,S) is the Z[v, v−1]−algebra
with generators hs for s ∈ S and relations

• h2s = (v−1 − v)hs + 1 (quadratic relation)

• hshrhs . . .︸ ︷︷ ︸
msr

= hrhshr . . .︸ ︷︷ ︸
msr

for all s, r ∈ S (braid relation)

When v is replaced by 1 in the definition, one obtains the algebra ZW . Thus
we can see the Hecke algebra as a deformation of the group algebra.
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For any reduced expression s = sr . . . t of an element x ∈ W define the el-
ement hs = hshr · · ·ht . By the forementioned result of Matsumoto [Ma] we
know that hs does not depend on the reduced expression s, it just depends on
x. We call this element hx . We define he = 1. The following is a basic lemma.

Lemma 3.1 (Nagayoshi Iwahori) The set {hx}x∈W is a basis of H as a Z[v, v−1]−algebra,
called the standard basis.

The element hs has an inverse, namely (hs + v − v−1) as it is shown in the
following calculation.

hs(hs + v − v−1) = [(v−1 − v)hs + 1] + hs(v − v−1)
= 1 (3)

This implies that hx has an inverse for every x ∈ W. So we can define a Z-
module morphism d : H → H by the formula d(v) = v−1 and d(hx) =
(hx−1)−1. It is an exercice to prove that this is a ring morphism, and we call
it the duality in the Hecke algebra.

Let us make a short calculation

d(hs + v) = (hs)
−1 + v−1

= (hs + v − v−1) + v−1

= (hs + v) (4)

So we obtain our first example of self-dual element. The following theorem
(see [KL]) is the foundational theorem of Kazhdan-Lusztig theory.

Theorem 3.2 (David Kazhdan and George Lusztig) For every element x ∈
W there is a unique self-dual element bx ∈ H such that

bx ∈ hx +
∑
y∈W

vZ[v]hy. (5)

The set {bx}x∈W is a Z[v, v−1]−basis of H, called the Kazhdan-Lusztig basis.
If we write bx = hx+

∑
y∈W hy,xhy then the Kazhdan-Lusztig polynomials py,x

are defined by the formula py,x = vl(x)−l(y)hy,x.

Remark 1 We will prove in Section 3.3 a stronger version of this theorem,
namely that

bx ∈ hx +
∑
y<x

vZ[v]hy, (6)

where < refers to the Bruhat order.
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Before we prove this theorem we will believe it for a while and calculate the
Kazhdan-Lusztig bases in some examples.

3.2 Calculations of KL bases in examples

In this section we give an explicit calculation of the Kazhdan-Lusztig basis for
the examples A, B and C and we will give the formula (without a proof) for
example D.

3.2.1 Baby example A

It is clear that bid = 1. We have seen that hs +v is self-dual and it is of the form
(6), so bs = (hs+v). By symmetry between s and r we have that br = (hr +v).

It is easy to see that bsr = bsbr . It is self-dual because d is a ring morphism and
bs and br both are. On the other hand it is of the form (6)

bsbr = hsr + vhs + vhr + v2,

and again we obtain brs by symmetry.

If we were very optimistic we would believe that bsrs = bsbrbs , which is self-
dual. Let us calculate

bsbrbs = (hsr + vhs + vhr + v2)(hs + v)

= (hsrs + vh2s︸︷︷︸+vhrs + v2hs) + (vhsr + v2hs + v2hr + v3) (7)

But vh2s = (1 − v2)hs + v, so bsbrbs is not of the form (6), we have a term that
is hs . To solve this issue we substract bs. We still have a self-dual element and
we eliminate the hs from the sum, so finally we obtain

bsrs = bsbrbs − bs
= hsrs + vhrs + vhsr + v2hs + v2hr + v3 (8)

3.2.2 Baby example B

In Example A we never used that msr = 3 in our calculations. The point is
that if msr 6= 3 then bsbrbs− bs 6= brbsbr− br . In our baby example (B) we have
msr = 4. For the same reasons as before we have

• bsr = bsbr
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• bsrs = bsbrbs − bs
• brsr = brbsbr − br.

So we just need to calculate bsrsr. We start again with

bsbrbsbr = (hsr + vhs + vhr + v2)(hsr + vhs + vhr + v2).

When we expand the right hand side, the only terms in the sum that do not
give elements of the form (6) are (vhs)(hsr) = (1−v2)hsr+vhr and (hsr)(vhr) =
(1− v2)hsr + vhs, so if we substract 2bsr, we eliminate the two “problematic”
terms and we obtain

bsrsr = bsbrbsbr − 2bsbr

= hsrsr + vhsrs + vhrsr + v2hsr + v2hrs + v3hs + v3hr + v4

=
∑

y≤srsr
v4−l(y)hy (9)

3.2.3 Example C

As one might have conjectured looking at the first two examples, for x ∈ I2(n)
we have

bx =
∑
y≤x

vl(x)−l(y)hy (10)

If we would want to play the game we played in the first two examples, this is,
if we wanted to express bx as additions and substractions of Bott-Samelsons (i.e.
objects of the type bsbr · · · bt, with s, r, . . . , t ∈ S ) then we obtain the combina-
torics appearing in Temperley-Lieb algebras, but this approach is a bit compli-
cated. It is easier to prove directly equation (10).

We will prove equation (10) by induction on the length of x. Let us call for the
moment

cx :=
∑
y≤x

vl(x)−l(y)hy

So our induction hypothesis is that by = cy for all elements y such that l(y) ≤
n. Let us introduce the following

Notation 3.3 In the group I2(n) = 〈s, r〉 we will denote, for any 0 ≤ i ≤ n,

s(i) := srs · · ·︸ ︷︷ ︸
i terms

∈W and r(i) := rsr · · ·︸ ︷︷ ︸
i terms

∈W
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We will prove that

cs(n+1) = bscr(n) − cs(n−1) (11)

thus mimicking the construction that we will do in the proof of Theorem 3.2.
Once we have proved this, we are done, because the right-hand side is clearly
self-dual (by induction hypothesis), and the left-hand side clearly belongs to
hs(n+1) +

∑
y vZ[v]hy and thus cs(n+1) = bs(n+1) .

We call x := s(n+ 1). If

A :=
∑

0≤i≤n
vn−ihr(i)

and

B :=
∑

0<i<n

vn−ihs(i),

then cr(n) = A+B.

We have that

bsA =
∑

0≤i≤n
vn−ihs(i+1) +

∑
0≤i≤n

v(n+1)−ihr(i)

=
∑

1≤j≤n+1

v(n+1)−jhs(j) +
∑

0≤i≤n
v(n+1)−ihr(i)

= cs(n+1).

On the other hand we have, using the quadratic relation,

bsB =
∑

0<i<n

vn−ihr(i−1) +
∑

0<i<n

vn−i−1hs(i)

=
∑

0≤j<n−1
v(n−1)−jhr(j) +

∑
0<i<n

v(n−1)−ihs(i)

= cs(n−1)

thus proving equation (11).

Remark 2 We can see that the proof of equation (11) is independent of the
dihedral group in which one is placed, but one knows that in I2(n) we have
hs(n) = hr(n) , and thus, by equation (11) we have bs(n) = br(n) . This is the basic
insight of the following example.
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3.2.4 Example D

Kazhdan-Lusztig polynomials were discovered (or invented) in 1979, but it
was only in 1990 that Matthew Dyer gave a formula [Dy] to calculate induc-
tively the Kazhdan-Lusztig basis for a Universal Coxeter system (we will not
reproduce here the proof, although it is not a difficult one). In this case, every
element has only one expression as a product of elements of S .

Theorem 3.4 (Dyer’s Formula) Let x ∈ Un and x = rs · · · with r, s, . . . ∈ S.
Then we have the following recursive formula

brbx = (v + v−1)bx

btbx = btx if t 6= r, s

bsbx = bsx + brx if s 6= r (12)

Our baby examples A and B are particular cases of example C (the case of
dihedral groups). We just saw in equation (11) that Dyer’s Formula is also
true for Dihedral groups (the first case of the formula comes from the fact
bsbs = (v + v−1)bs and the second case never appears in Dihedral groups). In
fact the same proof works for the infinite Dihedral group as we said in Remark
2. So the whole point of this theorem is that the calculation of the Kazhdan
Lusztig basis in this case is local in nature, i.e. different strings of alternating
simple reflections “don’t intersect each other” in the following sense.

Let x = · · · psps be an alternating sequence of simple reflections ending by s,
and y = srsrs · · · an alternating sequence of simple reflections starting by s.
Then we use the following notation

bx ∗ by :=
bxby

(v + v−1)

It is an exercice to prove that bx ∗ by ∈ H (hint: bx is divisible on the right and
by is divisible on the left by bs ). Consider the element

x := srsrsrprpruqtqrqrqrq.

As we said, the calculation is local, we have

bx = bsrsrsr ∗ brprpr ∗ bru ∗ buq ∗ bqtq ∗ bqrqrqrq.

With Dyer’s Formula in hand we could have done all the calculations we did
in the other examples with no effort. We apply it three times and we obtain

• bsr = bsbr
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• bsrbs = bsrs + bs −→ bsrs = bsbrbs − bs
• bsrsbr = bsrsr + bsr −→ bsrsr = bsbrbsbr − 2bsbr

Aha!

3.3 Proof of Theorem 3.2

Proof We reproduce the beautiful (and simple) proof of Soergel [So3, Theo-
rem 2.1] of the stronger version explained in Remark 1.

3.3.1 Existence

We prove it by induction on the Bruhat order. It is clear that be = he = 1 and
we have already seen in equation (4) that bs = hs + v. The following equation
is easy (see the important property in Section 2.7)

bshx =

{
hsx + vhx if sx > x

hsx + v−1hx if sx < x.
(13)

Now suppose we have proved the existence for all elements lesser than x in
the Bruhat order and x 6= e. Then we can find an s ∈ S such that sx < x. By
induction hypothesis and using equation (13) one has

bsbsx = hx +
∑
y<x

pyhy, (14)

for some py ∈ Z[v] (the v−1 in equation (13) is the only problem). But if we
define

bx = bsbsx −
∑
y<x

py(0)by, (15)

we still obtain a self-dual element (a Z-linear combination of self-dual ele-
ments) and it clearly is of the prescribed form, so this proves the existence of
bx.

3.3.2 Uniqueness

Suppose that we have two self-dual elements c = hx +h and c′ = hx +h′ , with
h, h′ ∈ H. Then one has that h− h′ is self-dual as h− h′ = c− c′.

We just need to prove

18



Claim 3.5 If h ∈
∑

y vZ[v]hy and h is self-dual, then h = 0.

Let us call bx the element that we constructed in Section 3.3.1. It is easy to see,
by equation (6) that

hx ∈ bx +
∑
y<x

Z[v, v−1]by,

thus
d(hx) ∈ bx +

∑
y<x

Z[v, v−1]by ⊆ hx +
∑
y<x

Z[v, v−1]hy. (16)

Let us write h =
∑

y pyhy , with py ∈ vZ[v] and let z be a maximal element (in
the Bruhat order) such that pz 6= 0. In other words, h = pzhz +

∑
y�z pyhy. By

equation (16) we obtain

d(h) ∈ d(pz)hz +
∑
y�z

Z[v, v−1]hy.

As h is self-dual, this implies that d(pz) = pz, contradicting the fact that
pz ∈ vZ[v] and thus proving the claim.

3.3.3 {bx}x∈W is a basis

The set {bx}x∈W is a Z[v, v−1]−basis given that the set {hx}x∈W is a basis and
by using the triangularity property in Remark 1.

3.4 Our favorite open questions about Hecke algebras

It is one of the most important achievements in the theory of Soergel bimod-
ules the proof [EW] by B. Elias and G. Williamson of the conjecture (stated
by Kazhdan and Lusztig) that Kazhdan-Lusztig polynomials have positive co-
efficients. We will come back to this beautiful and fundamental result in a
subsequent paper of this saga. For the moment, this theorem gives rise to the
following question.

Question 3.6 Give a combinatorial formula for the coefficients of Kazhdan-
Lusztig polynomials, i.e. express the coefficients of px,y as the cardinality of
some combinatorially defined set (even for the symmetric group this would be
extremely interesting).
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For the second question we have to introduce the Braid group BW of a Coxeter
system (W,S). It is the group

〈σs, s ∈ S | (σsσr)msr = e if s 6= r ∈ S and msr is finite〉.

The fact that we impose s 6= r is equivalent to not ask that s2 = e for all s ∈ S.
Thus the braid group of W is infinite unless W is trivial.

Question 3.7 Is the following group morphism

BW → H(W )

σs 7→ hs

an injection?

There is a categorical version of this question due to Rouquier. He conjectures
that “the braid group injects in the 2-braid group”. We will explain this conjec-
ture in detail in a subsequent paper. But we must say that Question 3.7 implies
the conjecture of Rouquier.

4 Categorical level in the baby example A

4.1 The objects: Soergel bimodules

In this section we will introduce Soergel bimodules in the baby example A, i.e.
the symmetric group S3. This case is hard enough to start with and most of
the features of general Soergel bimodules are already visible in this example.

Consider the polynomial ring R = R[x, y, z] (we could replace R by any field
of characteristic different from 2 in this section and the results would stay
true). We have a natural action of S3 on R . The simple reflection s inter-
changes x and y . In formulas

s · f(x, y, z) = f(y, x, z).

The simple reflection r interchanges y and z . So Rs (the subset of R fixed by
the action of s) is the polynomial ring R[x+ y, xy, z] and Rr = R[x, y + z, yz].
The subring fixed by both simple reflections s and r (or, what is the same, by
the whole group S3 ) is

Rs,r = R[x+ y + z, xy + xz + yz, xyz].

20



If we want to enter into Soergel-bimoduland (this is an invented word) we
have to take the grading into account. For technical reasons we need R to
have the usual Z-grading multiplied by two. So x, y and z will be in degree
2 (there are no elements of odd degree). The polynomials x2 and xz have
degree 4, the polynomial 3xy2z7 has degree 20. And we define the ring R
shifted “down” by one R(1) by declaring that x is in degree 1, x2 in degree
3 and 3xy2z7 in degree 19. Formally, if B = ⊕i∈ZBi is a graded object, we
declare that the shifted object B(m) in degree i is B(m)i := Bm+i.

The Z-graded R−bimodule R is the easiest example of a Soergel bimodule.
The second example of a Soergel bimodule is the Z-graded R−bimodules
Bs := R ⊗Rs R(1), for s ∈ S . Just for pedagogical reasons we insist that in
Bs the elements x ⊗ y and z2 ⊗ 1 + 1 ⊗ xz have degree 3 and x3 ⊗ zx has
degree 9.

Another example is the product Bs ⊗R Br , that we will call (for reasons that
will be clear later) Bsr. Another example of a Soergel bimodule for S3 is the
Z-graded R−bimodule Bsrs := R⊗Rs,r R(3).

We will use the convention that if M and N are two R−bimodules then their
“product” is defined by

MN := M ⊗R N.

We can now introduce the category of Soergel bimodules B(S3) in our baby
example S3 . They are Z-graded R−bimodules that are isomorphic to direct
sums and grading shifts of the following set of Z-graded R−bimodules

I = {R,Bs, Br, Bsr, Brs, Bsrs}.

Philosphy: One should think of Bs , BsBr and Bsrs as analogous objects to the
elements bs , bsr and bsrs respectively in the Hecke algebra. One should also think of
the product (resp. direct sum) between Soergel bimodules as an analogue of product
(resp. sum) in the Hecke algebra. Shifting the degree of a Soergel bimodule by one
should be seen as multiplying the corresponding element in the Hecke algebra by v .
We will make this statement precise at some point.

This philosophy will gently emerge in the following pages. Recall that the
Hecke algebra H(S3) is free over Z[v, v−1] with basis

{1, bs, br, bsr, brs, bsrs}.
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4.2 Stability of Soergel bimodules

4.2.1 The crucial phenomena

Baby Stability Theorem 4.1 The category B(S3) is stable under product.

Proof It is obvious that we just need to prove that we can write any product
of two elements of I as a direct sum of shifts of elements in I.

One important fact about R is that if p ∈ R , then p − s · p ∈ (y − x)Rs. For
example, if p = 3xy2z7 + yz ,

p− s · p = 3xy2z7 + yz − 3yx2z7 − xz
= (y − x)(3xyz7 + z).

It is an easy exercise to convince oneself of this fact (hint: start with monomi-
als). One can also see this fact more conceptually by noticing that the polyno-
mial p − s · p vanishes in the hyperplane defined by the equation y = x. The
same result stands for r . The element p − r · p is (z − y) multiplied by some
element of Rr. We define αs := y − x and αr := z − y . If we define

Ps(p) =
p+ s · p

2
∈ Rs and ∂s(p) =

p− s · p
2αs

∈ Rs

then we have the decomposition

p = Ps(p) + αs∂s(p). (17)

This equality gives rise to an isomorphism of graded Rs -bimodules

R ∼= Rs ⊕Rs(−2). (18)

As a direct consequence of this equation we obtain the isomorphism

BsBs
∼= R⊗Rs R⊗Rs R(2)
∼= R⊗Rs R(2) ⊕ R⊗Rs R

= Bs(1)⊕Bs(−1) (19)

Compare this isomorphism with the equality bsbs = vbs + v−1bs in the Hecke
algebra. We also obtain the following isomorphism

BsBsrs
∼= R⊗Rs R⊗Rs,r R(4)
∼= Bsrs(1)⊕Bsrs(−1). (20)

Compare this isomorphism with the equality bsbsrs = vbsrs + v−1bsrs in the
Hecke algebra.
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Let us recall a classic result of invariant theory. There is an isomorphism of
Rs,r -bimodules (see, for example [Hi, ch. IV, cor. 1.11 a.])

R ∼=
⊕
w∈S3

Rs,r(−2l(w)) (21)

This isomorphism implies that

BsrsBsrs
∼= Bsrs(−3)⊕Bsrs(−1)⊕2 ⊕Bsrs(1)⊕2 ⊕Bsrs(3) (22)

Compare this isomorphism with the equality

bsrsbsrs = (v−3 + 2v−1 + 2v1 + v3)bsrs

in the Hecke algebra.

To finish the proof of the Baby Stability Theorem 4.1 we just need to prove
the following isomorphism (that one should compare with the formula in the
Hecke algebra bsbrbs = bsrs + bs).

4.3 BsBrBs
∼= Bsrs ⊕Bs

For this we need first to define four morphisms of R-bimodules. The first one
is the multiplication morphism ms ∈ Hom(Bs, R)

ms : R⊗Rs R(1)→ R

p⊗ q 7→ pq

that is obviously a (degree 1) morphism. The second morphism ma
s ∈ Hom(R,Bs)

is its adjoint, in a sense that will become clear in Section 6.1 (thus explaining
the notation used for this morphism).

ma
s : R→ R⊗Rs R(1)

1 7→ αs ⊗ 1 + 1⊗ αs

To check that this is a (degree 1) morphism of R-bimodules we need to check
that for any p ∈ R we have ma

s(1)p = pma
s(1). This is

αs ⊗ p+ 1⊗ αsp = αsPs(p)⊗ 1 + αs∂s(p)⊗ αs + Ps(p)⊗ αs + ∂s(p)α
2
s ⊗ 1

= pαs ⊗ 1 + p⊗ αs.

For the first equality we used equation (17) and the fact that

α2
s = (x+ y)2 − 4xy ∈ Rs.
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The following morphism js ∈ Hom(BsBs, Bs) has degree −1

js : R⊗Rs R⊗Rs R(2)→ R⊗Rs R(1)

p⊗ q ⊗ h 7→ p∂s(q)⊗ h

If it is a well defined map it is obvious that it is an R-bimodule morphism.
So one just needs to check that js(prs ⊗ q ⊗ h) = js(p ⊗ rsq ⊗ h) and that
js(p ⊗ qrs ⊗ h) = js(p ⊗ q ⊗ rsh), for any rs ∈ Rs. Both equations follow
from the fact that ∂s is a morphism of left (or right) Rs -modules (this is easy
to check).

And finally, the last morphism, the adjoint of js (also of degree −1)

jas : R⊗Rs R(1)→ R⊗Rs R⊗Rs R(2)

p⊗ q 7→ p⊗ 1⊗ q

Notation 4.2 When it is clear from the context we will not write the identity
morphisms. For example if we write mr for a morphism in Hom(BsBrBs, BsBs)
we mean id⊗mr ⊗ id.

Easy Fact 4.3 The morphism e := −ma
r ◦ jas ◦ js ◦ mr ∈ End(BsBrBs) is an

idempotent (here we are using Notation 4.2).

Proof It is enough to check that js ◦mr ◦ma
r ◦ jas = −id ∈ End(Bs), which is

trivial.

From this fact we deduce that

BsBrBs = im(1− e)⊕ im(e), (23)

because if e is an idempotent 1 − e is easily checked to be an idempotent
orthogonal to e. It is obvious that mr and js are surjective and that ma

r and jas
are injective morphisms. This implies that

im(e) ∼= im(ma
r ◦ jas ) ∼= Bs.

To finish the proof we need to check the following isomorphism of graded
R-bimodules

4.4 im(1− e) ∼= Bsrs.

Let 1⊗ := 1⊗ 1⊗ 1⊗ 1 ∈ R⊗Rs R⊗Rr R⊗Rs R and let us denote by 〈1⊗〉 the
R-bimodule generated by 1⊗ . We will prove the Lemma in two steps.
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4.4.1 Step 1

We will prove that im(1− e) = 〈1⊗〉.

As (1− e)(1⊗) = 1⊗ we have that

〈1⊗〉 ⊆ im(1− e).

It is a fun and easy exercice (using twice equation (17) and some smart juggling
with the variables) to see that BsBrBs is generated as an R-bimodule by the
two elements 1⊗ and 1 ⊗ x ⊗ 1 ⊗ 1. We already know that (1 − e)(1⊗) ∈
〈1⊗〉. We will do explicitly some of the juggling we said before to see that
(1− e)(1⊗ x⊗ 1⊗ 1) ∈ 〈1⊗〉.

Firstly we note that in BsBrBs we have

1⊗ y ⊗ 1⊗ 1 = (x+ y)⊗ 1⊗ 1⊗ 1− 1⊗ x⊗ 1⊗ 1 (24)

By definition we have

(1− e)(1⊗ x⊗ 1⊗ 1) = 1⊗ x⊗ 1⊗ 1− 1

2
⊗ (z− y)⊗ 1⊗ 1− 1

2
⊗ 1⊗ (z− y)⊗ 1

We apply equation (24) in the second and third terms of the right hand side
and we obtain

(1− e)(1⊗ x⊗ 1⊗ 1) =
1

2
(x+ y − z)⊗ 1⊗ 1⊗ 1 + 1⊗ 1⊗ 1⊗ 1

2
(x+ y − z).

Thus we conclude Step 1 of the proof.

4.4.2 Step 2

We will prove that 〈1⊗〉 ∼= Bsrs .

It is clear that

R⊗Rs,r R(3)→ BsBrBs

p⊗ q 7→ p⊗ 1⊗ 1⊗ q

is a graded R-bimodule morphism. It is also clear that the image is 〈1⊗〉.
Because of the isomorphism (21) we have that

Bsrs
∼= R(−3)⊕R(−1)⊕2 ⊕R(1)⊕2 ⊕R(3)

as a graded left R-module. We know by (18) that

Bs
∼= R(−1)⊕R(1)
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as a graded left-R module and also

BsBrBs
∼= (R(−1)⊕R(1))⊗R (R(−1)⊕R(1))⊗R (R(−1)⊕R(1))

∼= R(−3)⊕R(−1)⊕3 ⊕R(1)⊕3 ⊕R(3)

By (23) we see that in each graded degree Bsrs and im(1 − e) have the same
dimension as finite dimensional R-vector spaces. As a surjective map between
isomorphic vector spaces is an isomorphism, we conclude the proof of Lemma
4.4, Proposition 4.3 and Theorem 4.1.

4.5 Soergel’s categorification Theorem

4.5.1 Indecomposables

Why did we us the letter I to denote the set {R,Bs, Br, Bsr, Brs, Bsrs}? Be-
cause they are indecomposable objects. Let us see why.

We will use the following notation. A min in the subindex of a graded object
means the minimal i for which its degree i part is non-zero. For example
(Bs)min = (Bs)−1

As we have seen, every element M ∈ I is generated as an R-bimodule by the
element 1⊗ ∈ Mmin . Let us suppose that M = N ⊕ P . Then we have that
Mmin = Nmin ⊕ Pmin as R-vector spaces, but the dimension of Mmin over R is
one, so Mmin is either Nmin or Pmin and thus M is either N or P . Thus M is
indecomposable.

Caution! It is a particularity of the group S3 that all the indecomposable Soergel
bimodules are generated by 1⊗ . For example in S4 the indecomposable Bs2s1s3s2 is
not generated by 1⊗ .

4.5.2 How to produce an algebra from Soergel bimodules

Let us introduce the

Notation 4.4 If p =
∑

i aiv
i ∈ N[v, v−1] and M is a graded bimodule, we will

denote by p ·M the graded bimodule⊕
i∈Z

M(i)⊕ai
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One can see that Soergel bimodules encode all the information of the Hecke
algebra. Let us try to make this idea more precise. Consider the following
“algebra” NB(S3) over N[v, v−1] (this is not a ring because it lacks of additive
inverse, so NB(S3) is strictly speaking not an algebra, but apart from this “de-
tail” it satisfies all the other defining properties of an algebra): the elements
of NB(S3) are Soergel bimodules modulo isomorphism. We denote by 〈M〉
the isomorphism class of M . In this algebra, the sum is defined to be direct
sum 〈M〉 + 〈N〉 := 〈M ⊕ N〉, the product is defined to be tensor product
〈M〉 · 〈N〉 := 〈MN〉 and multiplication by v is shifting your graded bimodule
by 1, i.e. v · 〈M〉 := 〈M(1)〉.

Proposition 4.5 There is an isomorphism of “algebras”

NB(S3) ∼=
⊕
w∈S3

N[v, v−1]bw ⊂ H =
⊕
w∈S3

Z[v, v−1]bw

〈Bw〉 7→ bw.

Proof The equations (19), (20), (21), (22) and Proposition 4.3 tell us that the
multiplication rules in both algebras are equal. The only problem that might
appear is that NB(S3) might not be free as a N[v, v−1]- module over the set
〈Bw〉w∈S3 , i.e. one might have that∑

w∈S3

pw〈Bw〉 ∼=
∑
w∈S3

qw〈Bw〉

with pw, qw ∈ N[v, v−1]. But this is not possible because we have that the
category of Z-graded finitely generated R-bimodules (or, what is the same,
R⊗R R-modules) admits the Krull-Schmidt Theorem. For a proof see [Pi, Sec-
tion 5.4].

4.5.3 Recovering the Hecke algebra

If we want to produce an algebra isomorphic to H starting with the category
of Soergel bimodules and not just “the positive part”, we just need to add
formally to NB(S3) the element −〈M〉 for every Soergel bimodule M . This
element will satisfy the equation −〈M〉+ 〈M〉 = 0. In this manner we obtain a
honest algebra over Z[v, v−1], isomorphic to H. One formal way of doing this
is with the following general definition.

Definition 3 Let A be an additive category. The split Grothendieck group
of A denoted by 〈A〉 is the free abelian group over the objects modulo the
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relations M = N +P whenever we have M ∼= N ⊕P. Given an object A ∈ A,
let 〈A〉 denote its class in 〈A〉.

In the case of 〈B(S3)〉, this group can be endowed with a structure of Z[v, v−1]-
algebra, as we have seen (addition is direct sum, product is tensor product,
etc).

Soergel’s categorification Theorem 4.6 If W is S3 we have

• The set W × Z is in bijection with the set of indecomposable Soergel
bimodules via the map

(w,m) 7→ Bw(m)

• The map

〈B(S3)〉 → H(S3)

〈Bw〉 7→ bw

〈R(1)〉 7→ v

is an isomorphism of Z[v, v−1]-algebras.

Proof The first part has already been proved. The second one also, modulo
the remark that before we used the notation 〈N〉 = 〈M〉 if N and M are iso-
morphic, and now we are using it for two elements equal in the Grothendieck
group and this could be confusing notation. In fact, due to the Krull-Schmidt
property explained in the proof of 4.5 these two notations mean the same
thing.

The morphisms between Bott-Samelson bimodules (i.e. bimodules of the form
BsBr · · ·Bt for s, r, . . . , t ∈ S ) in principle could be quite complicated, or even
atrocious, but we are, oh so very lucky. Two miracles happen. Firstly the Hom
spaces are free as R-modules. This is highly non-trivial.

The second miracle is that there is a combinatorial set (defined by the author
in [Li2]) in the Hom spaces, called “Light leaves” that is a basis of this free
Hom space. In the next section we will introduce Soergel bimodules for any
Coxeter group and we will explain the construction of light leaves before we
can calculate the indecomposable Soergel bimodules for the examples B, C and
D in Section 7.
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5 Soergel bimodules and light leaves in ranks 1 and 2

We will present the general definition of the category of Soergel bimodules,
but we will still work over the field of real numbers. Over a field of positive
characteristic the categorification theorem still works, but Soergel bimodules
behave quite differently (projectors from the Bott-Samelsons are not the same
as over R).

We will recall most of the definitions given in the last section to make this
section independent of the last one.

5.1 Soergel category B for any Coxeter system over R

Let (W,S) be an arbitrary Coxeter system. Consider V = ⊕s∈SRes the Geo-
metric Representation. It is a linear representation defined by the formula

s · er = er + 2 cos

(
π

msr

)
es for all s, r ∈ S,

where msr is the order of the element sr in W. By convention π/∞ = 0.

Let R = R(V ) be the algebra of regular functions on V with the grading in-
duced by putting V ∗ in degree two, i.e. R =

⊕
i∈ZRi with R2 = V ∗ and

Ri = 0 if i is odd. The action of W on V induces an action on R .

For any Z-graded object M =
⊕

iMi, and every n ∈ Z, we denote by M(n)
the shifted object defined by the formula

(M(n))i = Mi+n.

With this notation in hand we can define, for s ∈ S, the Z−graded R−bimodule

Bs = R⊗Rs R(1),

where Rs is the subspace of R fixed by s. Given M,N ∈ B we denote their
tensor product simply by juxtaposition: MN := M ⊗R N .

If s = (s1, . . . , sn) ∈ Sn, we will denote by Bs the Z−graded R−bimodule

Bs1Bs2 · · ·Bsn
∼= R⊗Rs1 R⊗Rs2 · · · ⊗Rsn R(n).

We use the convention B(id) = R. Bimodules of the type Bs are called Bott-
Samelson bimodules.
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The category of Soergel bimodules B = B(W,S) is the full sub-category of
Z−graded R−bimodules, with objects the shifts of finite direct sums of direct
summands of Bott-Samelson bimodules.

For every essentially small additive category A, we call 〈A〉 its split Grothendieck
group. It is the free abelian group generated by the objects of A modulo the re-
lations M = M ′ + M ′′ whenever we have M ∼= M ′ ⊕M ′′ . Given an object
A ∈ A, let 〈A〉 denote its class in 〈A〉.

In [So2] Soergel proves Soergel’s categorification theorem (the version of all these
results for the geometric representation explained here is proved in [Li3]),
which consist of two statements. Firstly, that there exist a unique ring iso-
morphism, the character map ch : 〈B〉 → H, such that ch(〈R(1)〉) = v and
ch(〈Bs〉) = (hs + v). Secondly, there is a natural bijection between the set of in-
decomposable Soergel bimodules and the set W ×Z. We call Bx the indecom-
posable Soergel bimodule corresponding to (x, 0) under this identification.

Question 5.1 Define an analogue of Soergel bimodules for complex reflection
groups.

Soergel also proves that if sr · · · t is a reduced expression for x ∈ W then one
has (recall Notation 4.4)

BsBr · · ·Bt
∼= Bx ⊕

⊕
y<x

qy ·By with qy ∈ N[v, v−1].

This formula, plus the fact that Bx does not appear in the decomposition of
any other Bott-Samelson of lesser length, gives a unique characterization of
Bx . The following theorem, conjectured by Soergel in the early nineties is
amazingly beautiful and it is probably the most powerful result in the theory.
We will come back to it in the follow-ups of this paper.

Theorem 5.2 (Elias and Williamson [EW]) ch(〈Bx〉) = bx.

Remark 3 It is is a result of Soergel that it is enough to prove that for each
x ∈W there is Mx ∈ B with ch(〈Mx〉) = bx.

We will represent morphisms between Bott-Samelson bimodules by drawing
them in a very specific way (in subsequent papers of this saga we will go
deeply in the reasons of why do we draw the morphisms in such a manner).
Let us start with “one color morphisms”.
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5.2 Drawing morphisms: one color

We fix a simple reflection s ∈ S. We will start by explaining how to represent
in a drawing a morphism between “one color Bott-Samelson bimodules”, i.e.
bimodules having only s in its expression, for example BsBsBsBs.

Morphisms will be drawn inside the strip R × [0, 1] ⊂ R2. This will be done
in a bottom-up way, i.e. in the line R × {0} we will draw the same number
of points as the number of Bs that appear in the source of our morphism and
in the line R× {1} we will draw the same number of points as the number of
Bs that appear in the target of our morphism (the bimodule R is represented
by the empty sequence). Here a list of examples were the lower black line is
always R × {0} and the upper black line is R × {1} (recall the morphisms in
4.3).

Figure 15: Important morphisms

We call ms and ma
s the dots and js and jas the trivalent vertices. We will not

longer draw the linesR×{0} and R×{1}, but we will assume that they exist.
A tensor product of morphisms is represented by glueing pictures, for example

Figure 16: Tensor product

represents the morphism js⊗ id⊗ms⊗ jas : BsBsBsBsBs → BsBsBsBs . Com-
position is represented by glueing bottom-up in the obvious way. For example
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Figure 17: Composition

represents the morphism js ◦ (js ⊗ id). We introduce the following notation

Figure 18: Cup and cap

The left-hand side morphism will be called the cup and the right-hand side the
cap. It is easy to verify that js ◦ (js ⊗ id) = js ◦ (id⊗ js), or in pictures

Figure 19: Associativity

This, of course means that any composition of js tensored by identities in any
order will give the same morphism, for example
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Given that there is no ambiguity and all these pictures represent the same mor-
phism, we will denote this morphism by a comon picture that we call the hang-
ing birdcage 2

Figure 20: Hanging birdcage

The identity of Bs (a vertical line) is also considered a hanging birdcage. If
we compose this morphism with a dot we obtain the non-hanging birdcage or
simply, the birdcage.

2The “birdcage” terminology is non-standard and used for the first time in this
paper.
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Figure 21: Birdcage

The length of a birdcage is the number of Bs that it has in its source. In the
example, it is a length 5 birdcage. A dot is a length 1 birdcage.

5.3 One color light leaves

A One Color Light Leaf is a morphism built-up only with birdcages and dots. In
the right-most position one can admit a hanging birdcage as in the picture.

Figure 22: Example of a one-color light leaf

Figure 23: Another example

By definition a light leaf has two possible targets (as shown in figures 22 and
23). It can be Bs if it ends with a hanging birdcage or R if not. We will call
LLn(s) the light leaves with source BsBsBs · · ·︸ ︷︷ ︸

n times

:= Bn
s and with target Bs , and

LLn(e) the light leaves with the same source and target R .
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For any morphism f represented by a picture, one can flip the picture upside-
down and thus obtain what we call the adjoint fa , and this is again a well
defined morphism with source and target flipped. For example, the adjoint of
the morphism in Figure 23 is the following

Now we can state the “one color” Double Leaves Theorem. This is a particular
case of a Theorem proved for any Coxeter system in [Li4].

Theorem 5.3 The set

LLm(s)a ◦ LLn(s)
⋃
LLm(e)a ◦ LLn(e)

is a basis of Hom(Bn
s , B

m
s ) as a right R-module. The elements of this basis are

called double leaves.

5.4 Two colors light leaves

In this section we will consider only two simple reflections, say s and r , repre-
sented by two colors, say red and blue. We will explain a version of the Double
Leaves Theorem in two colors but only for reduced expressions (we will see
that the general version of this theorem (Theorem 5.4) does not restrict to re-
duced expressions neither in the source nor in the target). It is for simplicity of
exposition that we use reduced expressions.

We will call a full birdcage a morphism of the following type

Figure 24: Full birdcage
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from a bimodule of the form BsBrBs · · · to R . We call it “full” by using the
metaphor that it is full with “birds” (the dots), even though it is a bit sad to
think this in such terms, poor birds. The color of a full birdcage is the color of
the birdcage, not the color of the birds. In Figure 24 we have a red full birdcage.
A red dot will also be considered a red full birdcage (just think about the empty
cage).

Let us play the following game. Start with a red dot. In each step of the game,
each dot in our figure can be transformed into another full birdcage of the
same color. For example, we transform the red dot into Figure 24. Then we
transform Figure 24 into

Figure 25: Third step in our game

where we transformed the second and fourth blue dots into different full bird-
cages. Now we repeat this process

Figure 26: Fourth step in our game

were we transformed the first, second, third and fifth red dots into different
full birdcages. One can continue this process any number of times and every
map one can obtain in this way will be called a birdcagecage3 (so in particular,
any birdcage and any dot is a birdcagecage). If one adds a string as before,
a birdcagecage is called a hanging birdcagecage (again the degenerate case of a

3Strictly speaking, the map in Figure 26 should be called birdcagecagecage, but it
seems to us a bit impractical this name, so we stick with birdcagecage.
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straight vertical line, the identity of some Bs , will also be considered a hanging
birdcagecage).

Let W be a Dihedral group or a Universal Coxeter group in two generators
(examples C and D). If x = srs · · · then we define the Bott-Samelson bimodule
Bx := BsBrBs · · · . If we exclude the longest element for the Dihedral case
then every element has only one reduced expression, so we can just call this
bimodule Bx .

A two-color light leaf with source Bx is a morphism built-up in three zones.
The left zone (say zona A) is composed by birdcagecages. The middle zone
(say zone B) is composed by hanging birdcagecages. The right zone (say zone
C) is either empty or composed by just one birdcagecage. One example of a
two color light leaf is

Figure 27: Example of a two-color light leaf

We will call LLx(z) the two color light leaves with source Bx and target Bz .
The following is a version of the Double Leaves Theorem in two colors

Theorem 5.4 Let W be a finite or infinite Dihedral group and x, y ∈W . If W
is finite, let us pick x or y different from w0 . The set⋃

z

LLy(z)a ◦ LLx(z)

is a basis of Hom(Bx, By) as a right R-module.

6 Light leaves in general

6.1 Adjunction

Until now we have spoken about “adjoint” morphisms without really saying
what the adjunction is.
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Lemma 6.1 If M and N are two Bott-Samelson bimodules, the following map
is an isomorphism of graded right R-modules

Hom(BsM,N)→ Hom(M,BsN)

f 7→ (idBs ⊗ f) ◦ ((jas ◦ma
s)⊗ idM )

It is an exercice to prove this (one just needs to find explicitly the inverse map).
In any case, a detailed proof can be found in [Li1, Lemme 2.4]. This adjunction
might seem complicated but in pictures, it is just this map

Figure 28: Adjunction map

It is an easy exercice to prove that jas is the adjoint of js in this sense as it is ma
s

of ms . Before we can consrtuct the light leaves we need

6.2 A new morphism

Until now we have just used the morphisms ms , js and its adjoints. We need a
new morphism that does not appear in the examples that we have seen so far
(it would appear in Theorem 5.4 if we would have considered x or y equal to
the longest element, or if we would have considered as source a Bott-Samelson
not represented by a reduced expression).

6.2.1 The morphism fsr

Consider the bimodule Xsr = BsBrBs · · · the product having m(s, r) terms
(recall that m(s, r) is the order of sr ). We define fsr as the only degree 0 mor-
phism from Xsr to Xrs sending 1⊗ to 1⊗ . We have essentially encountered
this morphism in Section 4.
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Let x = srs · · · with the product having m(s, r) terms. We have seen in Section
5.1 that one has an isomorphism

Xsr
∼= Bx ⊕

⊕
y<x

py ·By with py ∈ N[v, v−1].

We have a similar formula for Xrs . The morphism fsr can be defined (modulo
scalar) as the projection from Xsr onto Bx composed with the inclusion of Bx

into Xrs .

We have seen in the example W = S3 that Bx
∼= R ⊗Rs,r R. Moreover, one

can prove that this isomorphism is valid for any dihedral group, because the
morphism

R⊗Rs,r R→ Xsr

1⊗ 1 7→ 1⊗

is an isomorphism if one restricts the target to the sub-bimodule

Bx = 〈1⊗〉 ⊆ Xsr

generated by 1⊗ . So to have an explicit formula for fsr we just need to find
the inverse of this isomorphism. This is done in detail in [Li3, Prop. 3.9]. By
construction it is clear that frs is the adjoint of fsr. In [Li1, Chapter 2] one can
find several interpretations of fsr .

6.2.2 Examples

Suppose we are in the case W = Sn . In this case R = R[x1, x2, . . . , xn] and
the group W acts permuting the variables. We have that the simple reflections
in W are the si , the permutation switching the variables i and i + 1. For
simplicity of notation we will denote by fij the morphism fsisj and by Bi the
bimodule Bsi . In this example we have three cases to consider.

(1) First case: |i − j| > 1. The morphism fij : BiBj → BjBi is complete-
ley determined by the formula fij(1

⊗) = 1⊗, because the element 1⊗

generates BiBj as a bimodule.
(2) Second case: j = i+ 1. The morphism fij : BiBi+1Bi → Bi+1BiBi+1 is

completeley determined by the formulae fij(1⊗) = 1⊗ and

fij(1⊗ xi ⊗ 1⊗ 1) = (xi + xi+1)⊗ 1⊗ 1⊗ 1− 1⊗ 1⊗ 1⊗ xi+2

(3) Third case: j = i − 1. The morphism fij : Bi+1BiBi+1 → BiBi+1Bi is
completeley determined by the formulae fij(1⊗) = 1⊗ and

fij(1⊗ xi+2 ⊗ 1⊗ 1) = 1⊗ 1⊗ 1⊗ (xi+1 + xi+2)− xi ⊗ 1⊗ 1⊗ 1.
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6.3 Path morphisms

Definition 4 For (W,S) a Coxeter system and x ∈W we define the Reduced
expressions graph of x or simply Rex(x) as the graph with nodes the set of
reduced expressions of x and two reduced expressions are joined by an edge
if they differ by a single braid relation.

For every reduced expression s we have associated a Bott-Samelson bimodule
Bs. If two Bott-Samelson bimodules B,B′ differ by just one braid relation one
has a morphism of the type id ⊗ fsr ⊗ id ∈ Hom(B,B′). For example, for the
braid move pq srs u → pq rsr u (here we suppose srs = rsr ) we have an
associated morphism between the corresponding Bott-Samelson bimodules

id2 ⊗ fsr ⊗ id : BpBq(BsBrBs)Bu → BpBq(BrBsBr)Bu.

This means that for each path p in Rex(x) one can uniquely associate a mor-
phism f(p) between the corresponding Bott-Samelson bimodules. We call it a
path morphism.

Definition 5 A Complete path in a graph is a path passing through every
vertex of the graph at least once.

The following conjecture is due to the author.

Question 6.2 (Forking path conjecture) Let x ∈ Sn. Let p and q be two com-
plete paths in Rex(x). Then f(p) = f(q).

Some remarks about this conjecture

Remark 4 There has been some serious computer checking of this conjecture
by the author and Antonio Behn, using Geordie Williamson’s programs. That
this conjecture was checked in huge cases (Rex graphs of over 100.000 vertices)
was extremely surprising for the author. There is no conceptual understanding
of why this conjecture could be true. It seems utterly strange.

Remark 5 If this conjecture was proved, then one would have a new and nat-
ural basis for the Hecke algebra, by applying the character map to the image of
this (unique, for any element of Sn ) projector. The author believes this would
give a rich combinatorial basis of the Hecke algebra, and a very natural set of
Soergel bimodules that in our dreams should play a role in the understanding
of the p-canonical basis4.

4We will explain in a future paper of this saga what is this basis and why it is so
important.
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Remark 6 The conjecture is not true for any Coxeter group. There are counter-
examples for F4 (although not easy to find). Nonetheless, in [Li3] the author
proves an analogue of the Forking path conjecture for “extra-large Coxeter
groups”, i.e. groups in which m(s, r) > 3 for all s, r ∈ S, so it is quite mysteri-
ous for what groups this should be true.

Remark 7 There is a 55 pages paper of Elias [El] published in a fine journal
whose central result is that a certain path morphism in Rex(w0 ) is an idempo-
tent, where w0 is the longest element of Sn , and that it projects to the indecom-
posable Soergel bimodule. To prove that this path morphism is an idempotent
has aproximately the same level of difficulty as to prove the Forking path con-
jecture for the particular case of the longest element w0 and for two specific
complete paths p0 and q0 . This gives an idea of how hard the Forking path
conjecture can be, and also the kind of methods one can use to attack it (for ex-
ample, the beautiful topology appearing in the higher Bruhat order of Manin
and Schechtman).

If one has a reduced expression t1 · · · ti of some element x ∈ W , then by the
important property in Section 2.7 we know that, if xs < s for some s ∈ S ,
then there is at least one path in Rex(x) starting in t1 · · · ti and ending in some
reduced expression with s in the far-most right position. One considers the
path morphism associated to a path like this and call it a path morphism from
t1 · · · ti taking s to the right.

6.4 The tree Ts

Let (W,S) be an arbitrary Coxeter system. In this section we fix a sequence of
simple reflections s = (s1, . . . , sn) ∈ Sn and construct a tree Ts .

We construct a perfect binary tree (i.e a tree in which all interior nodes have
exactly two children and all leaves have the same depth) with nodes colored
by Bott-Samelson bimodules and arrows colored by morphisms from parent to
child nodes. We construct it by induction on the depth of the nodes. In depth
zero and one we have the following tree:
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(Bs1Bs2 · · ·Bsn)

ms1⊗id
n−1

~~

id

""
(Bs2 · · ·Bsn) (Bs1)(Bs2 · · ·Bsn)

Let k < n and t = (t1, · · · , ti) ∈ Si be such that a node N of depth k − 1 is
colored by the bimodule (Bt1 · · ·Bti)(Bsk · · ·Bsn), then we have two cases.

(1) If we have the inequality l(t1 · · · tisk) > l(t1 · · · ti), then the child nodes
(of depth k ) and child edges of N are colored in the following way:

(Bt1 · · ·Bti)(Bsk · · ·Bsn)

idi⊗msk
⊗id

xx

id

''
(Bt1 · · ·Bti)(Bsk+1

· · ·Bsn) (Bt1 · · ·BtiBsk)(Bsk+1
· · ·Bsn)

(2) If we have the opposite inequality l(t1 · · · tisk) < l(t1 · · · ti), then the
child nodes (of depth k ) and child edges of N are colored in the fol-
lowing way (arrows are the composition of the corresponding pointed
arrows):

(Bt1 · · ·Bti)(Bsk · · ·Bsn)

����

F⊗id
��

Br1 · · ·Bri−1BskBsk · · ·Bsn

idi−1⊗jsk⊗id
��

Br1 · · ·Bri−1Bsk · · ·Bsn

idi−1⊗msk
⊗id

ww

id

''
(Br1 · · ·Bri−1)(Bsk+1

· · ·Bsn) (Br1 · · ·Bri−1Bsk)(Bsk+1
· · ·Bsn)

The map F is any path morphism from t1 · · · ti taking sk to the right (see
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Section 6.3). This finishes the construction of Ts.

By composing the corresponding arrows we can see every leaf of the tree Ts

colored by Bx as a morphism in the space Hom(Bs, Bx). Consider the set
Ls(id), the leaves of Ts that are colored by the bimodule R . In [Li2] the set
Ls(id) is called light leaves basis and the following theorem is proved.

Theorem 6.3 (Nicolas Libedinsky ) The set Ls(id) is a basis of Hom(Bs, R)
as a left R-module.

In the paper [Li2] the leaves colored with R were called light leaves5. Later
this notion was changed in the literature and any leaf in the tree Ts got to be
called a light leaf. We follow this new convention.

6.5 Construction of the double leaves basis

In this section we consider two arbitrary sequences (not necessarily reduced)
of simple reflections s = s1 · · · sn and r = r1 · · · rp. We are interested in calcu-
lating the space Hom(Bs, Br).

Philosophy: The natural basis between Bott-Samelson bimodules is the tree Ts ”pasted”
with the tree Tr inverted.

For any light leaf l : Br → Bt in Tr we can find its adjoint light leaf la : Bt → Br

by replacing each morphism in the set {ms, js, fsr} by its adjoint. So we obtain
a tree Ta

r where the arrows go from children to parents.

Let Ls be the set of light leaves of Ts (recall that each leaf of the tree is seen as
a morphism between Bott-Samelson bimodules).

Let h ∈ Ls and g ∈ La
r , with h ∈ Hom(Bs, Bx) and g ∈ Hom(By, Br), where

x and y are reduced expressions of the elements x, y ∈ W respectively. We
define

g · h =

{
g ◦ F ◦ h if x = y

∅ if x 6= y

where F is any path morphism in Hom(Bx, By). We call the set La
r · Ls the

double leaves basis of Hom(Bs, Br). The following theorem is proved in [Li4].

5The reason for this is that if the “weight” of a leaf is the length of the corresponding
Bott-Samelson bimodule, then the leaves colored by R are the “lightest” ones.

43



Theorem 6.4 (Nicolas Libedinsky ) The Double Leaves Basis is a basis as a
right (or left) R-module of the space Hom(Bs, Br).

The proof of Theorem 6.4 is quite close to the proof of [Li2, Théorème 5.1].

Remark 8 Twice in this construction we said “where F is any path mor-
phism”. Of course, for this basis to be well defined, these choices must be
done once and for all. But what is quite striking about this theorem is that
with any of these choices, Theorem 6.4 holds. There is a way to solve this
ambiguity problem that we explore in the paper in preparation [LW].

Question 6.5 Give an algorithm to express a composition of double leaves as
a linear combination of double leaves.

7 Final calculations: examples B, C and D

In section 4 we were able to calculate the indecomposable Soergel bimodules
for the baby example A. Now that we have introduced the graphical notation
we are able to do the same thing (although we will not prove it) in the other
examples, B, C and D. This method gives also a different way to calculate the
indecomposable Soergel bimodules in baby example A. We will obtain them as
the image of some idempotents of Bott-Samelson’s instead of expressing them
as tensor products of bimodules (which is not possible in general).

It is enough to calculate example D (the Universal Coxeter group), since the
formulas there will still be true for any Dihedral group. So in this section we
place ourselves in the case of the Universal Coxeter system Un . Let us say that
the box

Figure 29: The projector
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expresses the projector (usually there are several projectors, but for this group
one can prove that it is unique) into the indecomposable bimodule Bx ⊂ Bx

where x is a reduced expression in Un . For example

The following is a categorification of Dyer’s Formula (Theorem 3.4) proved in
[EL].

Proposition 7.1 (Ben Elias and Nicolas Libedinsky ) Let x ∈ Un and x =
rs · · · be a reduced expression of x with r, s, . . . ∈ S. Let r be represented by
the color red, t by the color tea green and b by the color blue. Black represents
any color. We have the following inductive formula.

Extending x by a color t 6= r, s one has

Extending x by s one has
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To convince the reader that this is a categorification of Dyer’s formula, one
should remark that the rightmost term, when multiplied by −1, is an idempo-
tent of End(sx) projecting to Brx .
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