
Kevin I. Piterman and Leandro Vendramin

Computer algebra with GAP

– Monograph –

March 6, 2023

Preface

Implementing new algorithms and the ever-growing power of modern computers
have a revolutionary impact on science. Mathematics, whose artistic and creative
nature could have been thought to be a barrier to the influence of computers, does not
escape the reach of this revolution. Much of the mathematics published nowadays
makes extensive use of machine computations. Remarkably, a substantial part of the
results could not be obtainedwithout it orwould take an unreasonable amount of time.
This includesmany outstanding theoretical results that depend on computers to verify
a hypothesis or perform particular calculations while proving a theorem. The use of
computers is also growing in teaching mathematics at all levels. Regarding abstract
algebra, one computer algebra system that is hard to overlook is GAP (“Groups,
Algorithms and Programming”). It is extensively used when teaching elementary
algebra and in advanced scientific literature, testing and disproving conjectures. This
is one motivation that led us to write this monograph.

The first version of GAP was released in December 1988, named Version 2.4,
and it was a project started by Joachim Beubüser in 1986 at the Lehrstuhl D für
Mathematik, RWTH-Aachen University. Indeed, the system was officially presented
during anOberwolfachmeeting inMay 1988. TheGAP system has a kernel written in
C, and its interpreter for the programming language belongs to the family of PASCAL
languages. It may be regarded as an object-oriented and imperative programming
language. It is important to remark that GAP is an open-source program and is
available for download at https://www.gap-system.org/. On this webpage, users can
access a development repository hosted on GitHub, contribute to the improvement
of the software, and ask questions about its functionality.

This monograph includes the following topics: a basic introduction to the lan-
guage, basic arithmetic, permutations, matrices, polynomial rings, finite fields, finite
and finitely presented groups, small groups, group representations and character
theory, and simple groups. Advanced topics include testing several open conjectures
and theorems. In addition, each chapter ends with an extensive list of problems. We
hope the reader will find some problems challenging and exciting as they are based
on outstanding research papers. Selected solutions can be found at the end of the
book.

3

https://www.gap-system.org/

4 Preface

The book is the result of a series of courses delivered in the last few years at
Universidad de Buenos Aires, Universidad de Santiago de Chile, Reunión Anual
de la Unión Matemática Argentina (Bahía Blanca, Argentina), Dalhousie University
(Halifax, Canada), Vrĳe Universiteit Brussel (Belgium), and the Cimpa School
“Crossroads of geometry, representation theory and higher structures”.

We have also extensively used GAP in our research, particularly emphasizing the
structure of simple groups, conjugacy classes and representations of finite groups,
computation of non-commutative Gröbner bases, and classification of discrete al-
gebraic structures. This experience gives us a substantial share of insight to write
a comprehensive and user-friendly presentation of the capabilities of this computer
algebra system. We aimed to build on the material of several mini-courses we have
delivered, extending it to a book format and updating it with recent developments in
the area. We hope that a book presenting the foundations from scratch and reaching a
high level of mathematical concepts will rapidly become a valuable resource for the
mathematical community. On the one hand, this belief is supported by the opinion
of many colleagues who have encouraged us to write this particular book to respond
to their need for a consistent reference for this powerful tool. On the other hand, by
starting from the basics, the book will likely be helpful for a variety of graduate and
undergraduate courses in mathematics. Also, instructors can use this book to design
new exercises.

Acknowledgments
We thank the Centre International de Rencontres Mathématiques (CIRM) in

Marseille, France, and the Mathematisches Forschungsinstitut Oberwolfach (MFO)
for their invitations to the “Research in Pairs” programs. We express our infinite
gratitude to the staff of these institutions.

Several colleagues have helped with their suggestions by providing examples,
questions, exercises, solutions, and references. Among them, we especially thank
Bill Allombert, Thomas Brauer, Jan De Beule, Ilaria Colazzo, Andrew Darlington,
Bettina Eick, Fernando Fantino, Marco Farinati, César Galindo, Agustín García
Iglesias, GastónGarcía, IstvánHeckenberger,MaxHorn, AlexanderHulpke,Mikhail
Kotchetov, Nicolás Libedinsky, MitjaMastnak, Andrés Navas, Iván Sadofschi Costa,
Peter Selinger, Chris Wensley.

Oberwolfach, February 2023 Kevin I. Piterman, Leandro Vendramin

Contents

Part I Basic theory

1 First steps . 3
1.1 The very first steps . 3
1.2 Basic arithmetic . 5
1.3 Basic programming . 7

1.3.1 Objects and variables . 7
1.3.2 Conditionals . 8
1.3.3 Functions . 9
1.3.4 Loops . 12
1.3.5 Strings . 14
1.3.6 Lists . 15
1.3.7 Ranges . 20
1.3.8 Sets . 21
1.3.9 Records . 22

1.4 Other numbers . 23
1.4.1 Floating–point numbers . 23
1.4.2 Finite fields . 24
1.4.3 Cyclotomic numbers . 26

1.5 Permutations . 26
1.6 Matrices . 29
1.7 Polynomials . 34
1.8 Vector spaces . 36
1.9 Problems . 38

2 Basic group theory . 45
2.1 Basic constructions . 45
2.2 Group actions . 63
2.3 Homomorphisms . 69
2.4 Semidirect products . 73
2.5 Solvable groups . 82

5

6 Contents

2.6 Finitely presented groups . 84
2.7 Problems . 92

3 Advanced group theory . 97
3.1 Group databases . 97
3.2 Representations . 108
3.3 Some conjectures . 116

3.3.1 McKay’s conjecture . 116
3.3.2 Isaacs–Navarro conjecture . 118
3.3.3 Ore’s conjecture . 119
3.3.4 Thompson’s conjecture . 120
3.3.5 Szep’s conjecture . 122
3.3.6 Arad–Herzog conjecture . 123
3.3.7 Hughes’ conjecture . 125
3.3.8 Harada’s conjecture . 126
3.3.9 Berkovich’s conjecture . 127
3.3.10 Wall’s conjecture . 128
3.3.11 Quillen’s conjecture . 129

3.4 Group rings . 132
3.5 Kaplansky’s unit conjecture . 138
3.6 Problems . 142

References . 145

Index . 149

Part I
Basic theory

Chapter 1
First steps

In this chapter, we begin with basic commands and arithmetic operations. Then
we continue with the basics of the GAP programming language, such as structure
controls and fundamental objects and variable types. We will also discuss some
important algebraic structures, such as integers and rational numbers, finite fields,
sets and permutations, matrices, polynomials and vector spaces.

1.1 The very first steps

Immediately after running GAP, we will see some information about the distribution
that we have installed. This information includes the software version number and
the packages loaded in memory. We will also see that GAP is ready:

gap>

To close GAP one uses quit:

gap> quit;

Every command should end with the symbol ; (semicolon). The symbol ;;
(double semicolon) is also used to end a command, but it means that no screen
output will be produced.

gap> 2+5;;
gap> 2+5;
7

To see information related to commands, functions, tutorials, and manuals, one
uses the symbol ? (question mark). Here we have some examples:

gap> ?tutorial
gap> ?sets
gap> ?help
gap> ?permutations

3

4 1 First steps

gap> ?Eigenvalues
gap> ?CyclicGroup
gap> ?FreeGroup
gap> ?SylowSubgroup

To write comments, one uses the symbol # (number sign or hash) as the following
example shows:

gap> # This is just a comment!

Tomake the command linemore readable, one could use the symbol\ (backslash),
as we see in the following example:

gap> # Let us compute 1+2+3
gap> 1\
> +2\
> +3;
6

The function LogTo saves the output in a given file. Everything you see on your
terminal will also appear in this file. When the function LogTo is called with no
parameters, GAP will stop writing a log file.

gap> # Save the output to the file mylog
gap> LogTo("mylog");
gap> # Stop saving the output
gap> LogTo();

NamesUserGVars returns the names of the global variables created by the user;
note that loading a package may create new global variables. On the other hand,
MemoryUsage returns the bytes used by a variable:

gap> p := 2^30;;
gap> NamesUserGVars();
["ProcessInitFiles", "p"]
gap> s := "a string";;
gap> NamesUserGVars();
["ProcessInitFiles", "p", "s"]
gap> MemoryUsage(p);
8
gap> MemoryUsage(s);
41

In the UNIX-based operating system, to run a GAP script from the terminal, we
simply write

$ gap myfile.g

If we choose to limit the memory used, say for example, to 2GB, we call GAP as
follows:

$ gap -o 2G myfile.g

1.2 Basic arithmetic 5

The function SaveWorkspace saves a “snapshot" image of the current workspace
in a file. Then, if we load this file when opening GAP, we will recover the full session
that we had when this function was called. This means, for example, that we will
recover all the variables (and hence functions) that were defined in our workspace at
the moment we called SaveWorkspace.

In the following example we see how it works:

gap> n := 100;
gap> SaveWorkspace("myfile.data");
true
gap> quit;

A file called myfile.data was produced. Now we call GAP as follows:

$ gap -L myfile.data

We asked GAP to read the workspace stored in the file myfile.data. This means
we will recover the GAP session precisely where SaveWorkspace was called. In
particular, our new GAP session based on the file myfile.data will know the value
of the variable n.

1.2 Basic arithmetic

One can do basic arithmetic operations with rational numbers:

gap> 1+1;
2
gap> 2*3;
6
gap> 8/2;
4
gap> (1/3)+(2/5);
11/15
gap> 2^(-4);
1/16
gap> 2*(-6)+4;
-8
gap> (1-5^2)^2-2*(2+4*2)^2;
376
gap> NumeratorRat(3/5);
3
gap> DenominatorRat(3/5);
5

One uses a mod m to obtain the remainder modulo < of 0:

gap> 6 mod 4;
2
gap> -6 mod 5;
4

6 1 First steps

There are several built-in functions that one can use for specific purposes. For ex-
ample, Factors returns the factorization of an integer and IsPrime detects whether
an integer is prime or not:
gap> Factors(10);
[2, 5]
gap> Factors(18);
[2, 3, 3]
gap> Factors(1800);
[2, 2, 2, 3, 3, 5, 5]
gap> IsPrime(1800);
false
gap> Factors(37);
[37]
gap> IsPrime(37);
true

To obtain more information about integers, one can check the documentation:
gap> ?Integers

Other useful functions: Sqrt computes square roots, Factorial computes the
factorial of a positive integer, Gcd computes the greatest common divisor of a finite
list of integers, and Lcm computes the least common multiple:
gap> Sqrt(25);
5
gap> Factorial(15);
1307674368000
gap> Gcd(10, 4);
2
gap> Lcm(10, 4, 2, 6);
60

Remark 1.1. What happens if one tries to compute Sqrt(7)? We will get a result,
but it will not be a rational number. See §1.4.1 for more details.

The function Inverse (resp. AdditiveInverse) returns the multiplicative (resp.
additive) inverse of an element:
gap> AdditiveInverse(2/3);
-2/3
gap> Inverse(2/3);
3/2

We can work with very large numbers. Let us see some examples.

Example 1.1. One can easily prove that = = 164 is the largest integer such that 7=
divides 1000!:
gap> Factorial(1000) mod 7^164;
0
gap> Factorial(1000) mod 7^165 = 0;
false

1.3 Basic programming 7

Example 1.2. Let us compute 999179 mod 1793:

gap> 999^179 mod 1763;
1219

The following example appears in Mathoverflow, question #282035. Can you
prove the result without using computer software?

Example 1.3. The sum of digits of 31000 is divisible by 7:

gap> Sum(ListOfDigits(3^1000)) mod 7;
0

1.3 Basic programming

1.3.1 Objects and variables

An object is something that we can assign to a variable, such as a number, a function,
a string, a group, a field, an element of a group, a group homomorphism, a ring, a
matrix, or a vector space. To assign an object to a variable, one uses the operator :=
as the following example shows:

gap> p := 32;;
gap> p;
32
gap> p = 32;
true
gap> p := p+1;;
gap> p;
33
gap> p = 32;
false

Remark 1.2. The symbols = (conditional) and := (assignment operator) are different!

Remark 1.3. What happens if we forget to save the result of a previous calculation
in a variable? We can do the following:

gap> 2*(5+1)-6;
6
gap> n := last;
6

Note that last returns the very last output. One also has last2 and last3 to obtain
the second-to-last and third-to-last outputs, respectively.

8 1 First steps

The global variable time stores the number of milliseconds the last command
took. In the following example, we create some randommatrices and see the number
of milliseconds the calculations take:

gap> m := RandomInvertibleMat(20);;
gap> time;
11
gap> m := RandomInvertibleMat(50);;
gap> time;
430

The function StringTime converts a given number of milliseconds to a readable
string:

gap> StringTime(430);
" 0:00:00.430"
gap> StringTime(2000);
" 0:00:02.000"

On page 23, we discuss other ways of measuring run times.
The function IsBound checks if a variable points to a value (i.e., if the variable

is already defined). The function Unbind deletes an identifier. Thus Unbind can be
used, for example, to get rid of unwanted large objects:

gap> IsBound(my_variable);
false
gap> my_variable := 100;;
gap> IsBound(my_variable);
true
gap> NamesUserGVars();
["ProcessInitFiles", "my_variable"]
gap> Unbind(my_variable);
gap> IsBound(my_variable);
false
gap> NamesUserGVars();
["ProcessInitFiles"]

The internal variable ProcessInitFiles appears in newer versions of GAP.

1.3.2 Conditionals

There are three important logical operators: not, and, or. We also have comparison
operators; for example, the expression x<>y returns true if x and y are different,
and false otherwise:

gap> x := 20;; y := 10;;
gap> x <> y;
true
gap> x > y;
true

1.3 Basic programming 9

gap> (x > 0) or (x < y);
true
gap> (x > 0) and (x < y);
false
gap> (2*y < x);
false
gap> (2*y <= x);
true
gap> not (x < y);
true

Example 1.4. Let us check that 100300 > 300100:

gap> 100^300 > 300^100;
true

The construction if ... then ... fi is easy to understand if we look at partic-
ular examples. To illustrate the use of the if–then statement, we refer to Example 1.5
below, where the function

5 : = ↦→

=3 if = ≡ 0 mod 3,

=5 if = ≡ 1 mod 3,

0 otherwise,

is constructed.

1.3.3 Functions

There are two equivalent ways of constructing simple functions. For example, to
construct the map G ↦→ G2 either we can use the one-line definition

gap> InlineSquare := x->x^2;
function(x) ... end

or the more natural

gap> MySquare := function(x)
> return x^2;
> end;
function(x) ... end

In both cases, we will obtain the same result:

gap> InlineSquare(4);
16
gap> MySquare(4);
16
gap> InlineSquare(-5);

10 1 First steps

25
gap> MySquare(-5);
25

Remark 1.4. The function x->x^2will return the square x^2 of the object xwhenever
this makes sense. We do not need to specify the type of x.

One can also define functions with no arguments. The following is a classic
example:

gap> SayHi := function()
> Display("Hello world");
> end;
function() ... end
gap> SayHi();
Hello world

Example 1.5. Let us write a function to compute the map

5 : = ↦→

=3 if = ≡ 0 mod 3,

=5 if = ≡ 1 mod 3,

0 otherwise.

Here is the code and some experiments:

gap> f := function(n)
> if n mod 3 = 0 then
> return n^3;
> elif n mod 3 = 1 then
> return n^5;
> else
> return 0;
> fi;
> end;
function(n) ... end
gap> f(10);
100000
gap> f(5);
0
gap> f(4);
1024

Example 1.6. The Fibonacci sequence 5= is defined recursively as 51 = 52 = 1 and

5=+1 = 5= + 5=−1

for = ≥ 2. The following function computes the Fibonacci numbers:

gap> MyFibonacci := function(n)
> if n = 1 or n = 2 then

1.3 Basic programming 11

> return 1;
> else
> return MyFibonacci(n-1)+MyFibonacci(n-2);
> fi;
> end;
function(n) ... end
gap> MyFibonacci(10);
55

Note that with this method, it is impossible to compute higher terms of the sequence.
So, for example, we cannot compute the value of 5100. Do you know why?

For a positive integer =, let

5 (=) =
{
=/2 if = is even,
3= + 1 if = is odd.

Conjecture 1.1 (Collatz). For any positive integer =, there exists an integer < ≥ 1
such that 5 < (=) = 1, where 5 < = 5 ◦ · · · ◦ 5 (<-times).

The conjecture, also known as the 3= + 1 problem, the Syracuse problem, Kaku-
tani’s problem, Hasse’s algorithm, and Ulam’s conjecture, is still open; we refer to
[30] for more information.

Example 1.7 (Testing Collatz conjecture). Let us test the conjecture for = = 5:

gap> f := function(n)
> if n mod 2 = 0 then
> return n/2;
> else
> return 3*n+1;
> fi;
> end;
function(n) ... end
gap> f(f(f(f(f(5)))));
1

An interesting exercise is to write a function that for each = returns the smallest
integer < such that 5 < (=) = 1. A possible solution uses recursive functions:

gap> g := function(n)
> if f(n) = 1 then
> return 1;
> else
> return 1+g(f(n));
> fi;
> end;
function(n) ... end

12 1 First steps

1.3.4 Loops

We will explain how loops work with the following straightforward problem. We
want to check that

1 + 2 + 3 + · · · + 100 = 5050.

We can use the function Sum:

gap> Sum([1..100]);
5050

An alternative way of performing this computation is by using the for loop structure
for ... do ... od:

gap> s := 0;;
gap> for k in [1..100] do
> s := s+k;
> od;
gap> s;
5050

We can also use the while loop structure: while ... do ... od:

gap> s := 0;;
gap> k := 1;;
gap> while k <= 100 do
> s := s+k;
> k := k+1;
> od;
gap> s;
5050

Alternatively, we can also use the structure repeat ... until:

gap> s := 0;;
gap> k := 1;;
gap> repeat
> s := s+k;
> k := k+1;
> until k > 100;
gap> s;
5050

Example 1.8. Let us compute (again) some Fibonacci numbers, this time without
using recursive functions. The following method is computationally more efficient
than that of Example 1.6.

gap> MyFibonacci := function(n)
> local k, x, y, tmp;
> x := 1;
> y := 1;
> for k in [3..n] do
> tmp := y;

1.3 Basic programming 13

> y := x+y;
> x := tmp;
> od;
> return y;
> end;
function(n) ... end
gap> MyFibonacci(100);
354224848179261915075
gap> MyFibonacci(1000);
4346655768693745643568852767504062580256466051737178040248172908\
9536555417949051890403879840079255169295922593080322634775209689\
6232398733224711616429964409065331879382989696499285160037044761\
37795166849228875

In the previous function, we defined local variables. The local statement must be
the first statement of a function definition. The nature of local variables in a function
prevents the value of the variables from being overwritten outside this particular
function.

Example 1.9. Divisors of a given integer can be obtained with DivisorsInt. In this
example, we run over the divisors of 100 and print only those that are odd:

gap> Filtered(DivisorsInt(100), x->x mod 2 = 1);
[1, 5, 25]

Similarly:

gap> for d in DivisorsInt(100) do
> if d mod 2 = 1 then
> Display(d);
> fi;
> od;
1
5
25

With continue one can skip iterations. An equivalent (but less elegant) approach to
the problem of Example 1.9 is the following:

gap> for d in DivisorsInt(100) do
> if d mod 2 = 0 then
> continue;
> fi;
> Display(d);
> od;
1
5
25

With break one breaks a loop. In the following example, we run over the numbers
1, 2, . . . , 100 and stop when a number whose square is divisible by 20 appears:

14 1 First steps

gap> First([1..100], x->x^2 mod 20 = 0);
10

Similarly:

gap> for k in [1..100] do
> if k^2 mod 20 = 0 then
> Display(k);
> break;
> fi;
> od;
10

1.3.5 Strings

A string (of characters) is an expression delimited by the symbol " (quotation mark):

gap> mystring := "hello world";
hello world

Each element of a string will have a unique position that identifies it. Such a po-
sition is called the index of the element. Indices start at position one. To extract
one character, one uses the expression mystring[position]; to extract substrings
mystring{positions}. Let us see some examples:

gap> mystring[1];
’h’
gap> mystring[3];
’l’
gap> mystring{[1,2,3,4,5]};
"hello"
gap> mystring{[7,8,9,10,11]};
"world"
gap> mystring{[11,10,9,8,7,6,5,4,3,2,1]};
"dlrow olleh"

Several functions allow us to work with strings. The function String converts
anything into a string of characters:

gap> String(1234);
"1234"
gap> String(01234);
"1234"
gap> String([1,2,3]);
"[1, 2, 3]"
gap> String(true);
"true"

The function ReplacedString replaces substrings:

1.3 Basic programming 15

gap> ReplacedString("Hello world", "world", "all");
"Hello all"

The function Print allows us to print data (in this case, a string) on the screen:

gap> mystring := "Hello world";;
gap> Print(mystring);
Hello world

Let us see another example:

gap> n := 100;;
gap> m := 5;;
gap> Print(n, " times ", m, " is ", n*m);
100 times 5 is 500

The function Print can be used with some special characters. For example, \n
means “new line”:

gap> Print("Hello\nworld");
Hello
world
gap> Print("To write \\...");
To write \...

The functions PrintTo and AppendTo work as Print but the output goes to a file.
It is important to remark that PrintTo will overwrite an existing file!

1.3.6 Lists

A list is an ordered sequence of objects (maybe of different types), including empty
places. Thus, for example, an array of numbers is just a list of numbers. Lists are
written using square brackets:

gap> IsList([1, 2, 3]);
true
gap> IsList([1, 2, 3, "abc"]);
true
gap> IsList([1, 2,, "abc"]);
true
gap> 2 in [1, 2, 5, 4, 10];
true
gap> 3 in [0, 10, "abc"];
false
gap> ListWithIdenticalEntries(3, "a");
["a", "a", "a"]

We can create lists in a clean way by using list comprehension. The following
examples illustrate different ways to construct lists and need no further explanations:

16 1 First steps

gap> List([1..10], x->-x);
[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]
gap> List([1, 2, 3, 4, 5], x->x^2);
[1, 4, 9, 16, 25]
gap> List([1, 2, 3, 4, 5], IsPrime);
[false, true, true, false, true]
gap> Filtered([1..20], IsPrime);
[2, 3, 5, 7, 11, 13, 17, 19]

As it happens with strings, each element of a list will have a unique position, the
element index, that identifies it.

Example 1.10. Let us create a list with the first six prime numbers. Both Size and
Length return the number of elements of the list:

gap> primes := [2, 3, 5, 7, 11, 13];
[2, 3, 5, 7, 11, 13]
gap> Size(primes);
6
gap> Length([1,2,3,,4,,,5]);
8
gap> Size([1,2,3,,4,,,5]);
8

Remark 1.5. Size for a list calls Length and the length of a list is defined as the
index of the last bound entry. Let us see some examples:

gap> Size([,,,,]);
0
gap> [,,,,];
[]
gap> Size([1,,,,]);
1
gap> [1,,,,];
[1]
gap> Size([,,,,1]);
5
gap> [,,,,1];
[,,,, 1]

To access an element inside a list, one should refer to the position:

gap> primes[1];
2
gap> primes[2];
3

Let us obtain the sublist consisting of the elements in the second, third and fifth
positions:

gap> primes;
[2, 3, 5, 7, 11, 13]

1.3 Basic programming 17

gap> primes{[2, 3, 5]};
[3, 5, 11]

Another example (to avoid confusion):

gap> mylist := ["a", "b", "c", "d", "e", "f"];
["a", "b", "c", "d", "e", "f"]
gap> mylist{[1, 3, 5]};
["a", "c", "e"]

One uses Position to find elements inside a list. If the element we are looking for
does not belong to the list, Position will return fail; otherwise, it will return the
first occurrence of the element. Let us look at some examples:

gap> Position([5, 4, 6, 3, 7, 3, 7], 5);
1
gap> Position([5, 4, 6, 3, 7, 3, 7], 1);
fail
gap> Position([5, 4, 6, 3, 7, 3, 7], 7);
5

The functions Add and Append are used to add elements at the end of a list. The
following examples show how these functions work:

gap> primes;
[2, 3, 5, 7, 11, 13]
gap> # Add 19 at the end of the list
gap> Add(primes, 19);
gap> primes;
[2, 3, 5, 7, 11, 13, 19]
gap> # Add the prime 17 at position 7
gap> Add(primes, 17, 7);
gap> primes;
[2, 3, 5, 7, 11, 13, 17, 19]
gap> # Add 23 and 29 at the end
gap> Append(primes, [23, 29]);
gap> primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

To remove elements from a list, one uses Remove:

gap> # Remove the first element of the list
gap> Remove(primes, 1);;
gap> primes;
[3, 5, 7, 11, 13, 17, 19, 23, 29]

For lists, IsBound can be used to check whether entries are bound:

gap> l := [1..5];;
gap> IsBound(l[5]);
true
gap> IsBound(l[6]);
false

18 1 First steps

The function Concatenation concatenates two or more lists. This function re-
turns a new list consisting of the lists used in the argument:

gap> Concatenation([1, 2, 3], [4, 5, 6]);
[1, 2, 3, 4, 5, 6]

Remark 1.6. There is a difference between Append and Concatenation. The func-
tion Append modifies the lists used in the argument, while Concatenation does
not.

The function Collected returns a new list where each element of the original
list appears with multiplicity:

gap> Factors(720);
[2, 2, 2, 2, 3, 3, 5]
gap> Collected(last);
[[2, 4], [3, 2], [5, 1]]

Tomake a copy of a list, one should use the function ShallowCopy. The following
example shows the difference between ShallowCopy and the assignment operator:

gap> a := [1, 2, 3, 4];;
gap> b := a;;
gap> c := ShallowCopy(a);;
gap> Add(a, 5);
gap> a;
[1, 2, 3, 4, 5]
gap> b;
[1, 2, 3, 4, 5]
gap> c;
[1, 2, 3, 4]
gap> Add(b, 10);
gap> a;
[1, 2, 3, 4, 5, 10]
gap> b;
[1, 2, 3, 4, 5, 10]

Remark 1.7. The function ShallowCopy takes a picture of the list at a particular
moment. In our example, we have a list a, a mirror image of a called b, and a
photograph (shallow copy) of a called c. If we modify the lists a or b, then both a

and b change, but not the list c. Conversely, modifying c will not change a and b.

The function Reversed returns a list containing the elements of our list in reversed
order. In the following example, the variable listwill not bemodified by the function
Reversed:

gap> mylist := [2, 4, 7, 3];;
gap> Reversed(mylist);
[3, 7, 4, 2]
gap> mylist;
[2, 4, 7, 3]

1.3 Basic programming 19

The function SortedList returns a new list where the elements are sorted with
respect to the operator <=. In the following example, one sees that SortedList will
not modify the value of the variable mylist:

gap> mylist := [2, 4, 7, 3];;
gap> SortedList(mylist);
[2, 3, 4, 7]
gap> mylist;
[2, 4, 7, 3]

The function Sort sorts a list in increasing order. Can you recognize the difference
between Sort and SortedList?

gap> mylist := [2, 4, 7, 3];;
gap> Sort(mylist);
gap> mylist;
[2, 3, 4, 7]

Remark 1.8. If we want to apply SortedList or Sort to a given list, then all the
elements of the list must be of the same type and comparable for the operator <=.

One can also use particular ordering functions:

Example 1.11. Let - = {1, . . . , 10}. We let H � G if and only if G has at least the
same number of prime factors as H. Then

1 � 9 � 8 � 7 � 5 � 4 � 3 � 2 � 10 � 6.

Note that, for example, 3 � 2 and 2 � 3. Here is the code:

gap> MyOrder := function(x, y)
> return Size(PrimeDivisors(x)) <= Size(PrimeDivisors(y));
> end;
function(x, y) ... end
gap> l := [1..10];;
gap> Sort(l, MyOrder);
gap> l;
[1, 9, 8, 7, 5, 4, 3, 2, 10, 6]

The function Filtered allows us to obtain the elements of a list that satisfy a
particular given property; if we just want to count such elements, we use Number. In
the same vein, First returns the first element of a list that satisfies a given property.
Here we have some examples:

gap> mylist := [1, 2, 3, 4, 5];;
gap> Filtered(mylist, x->x mod 2 = 0);
[2, 4]
gap> Number(mylist, x->x mod 2 = 0);
2
gap> Filtered(mylist, x->x mod 2 = 1);
[1, 3, 5]

20 1 First steps

gap> Filtered(mylist, IsOddInt);
[1, 3, 5]
gap> First(mylist, x->x mod 2 = 0);
2

One can also perform arithmetic operations on lists:
gap> Sum([1..5], x->2*x);
30
gap> Sum(ListOfDigits(342));
9
gap> Product([1..5], x->x^2);
14400

Example 1.12. Let us compute how many powers of 2 divide 18000. This number is
four, as the following code shows:
gap> Factors(18000);
[2, 2, 2, 2, 3, 3, 5, 5, 5]
gap> Collected(Factors(18000));
[[2, 4], [3, 2], [5, 3]]
gap> Number(Factors(18000), x->x = 2);
4

The function ForAny returns true if there is an element in the list satisfying
the required condition and false otherwise. Similarly, ForAll returns true if all
the elements of the list satisfy the required condition and false otherwise. The
following examples illustrate how these functions work:
gap> ForAny([2, 4, 6, 8, 10], x->x mod 2 = 0);
true
gap> ForAll([2, 4, 6, 8, 10], x->x > 0);
true
gap> ForAny([2, 3, 4, 5], IsPrime);
true
gap> ForAll([2, 3, 4, 5], IsPrime);
false
gap> ForAny([false, false], x->x = true);
false
gap> ForAny([true, false], x->x = true);
true
gap> ForAll([true, false], x->x = true);
false
gap> ForAll([true, true], x->x = true);
true

1.3.7 Ranges

Ranges are lists of integers where the difference between any two consecutive ele-
ments is constant:

1.3 Basic programming 21

gap> Elements([1..5]);
[1, 2, 3, 4, 5]
gap> Elements([1, 3..11]);
[1, 3, 5, 7, 9, 11]
gap> Elements([0, -2..-8]);
[-8, -6, -4, -2, 0]
gap> IsRange([1..100]);
true
gap> IsRange([1, 3, 5, 6]);
false

We can use Elements to list all the elements in a given range. Conversely,
ConvertToRangeRep converts (if possible) a list into a range:

gap> l := [1, 2, 3, 4, 5];;
gap> ConvertToRangeRep(l);;
gap> l;
[1 .. 5]
gap> l := [7, 11, 15, 19, 23];
gap> IsRange(l);
true
gap> ConvertToRangeRep(l);
gap> l;
[7, 11 .. 23]

1.3.8 Sets

A set is a particular type of ordered list with no repetitions nor gaps. To create sets
(or to convert a list into a set) one uses Set:

gap> mylist := [1, 2, 3, 1, 5, 6, 2];;
gap> IsSet(mylist);
false
gap> Set(mylist);
[1, 2, 3, 5, 6]
gap> Set([1,2,,,3,2,,1]);
[1, 2, 3]
gap> Set([1..10], x->x mod 3);
[0, 1, 2]

To add elements use AddSet and UniteSet. To remove an element, use the
function RemoveSet. These commands modify the set given as a parameter. Here
we have some examples:

gap> myset := Set([1, 2, 4, 5]);;
gap> # Let us add the number 10
gap> AddSet(myset, 10);
gap> myset;
[1, 2, 4, 5, 10]

22 1 First steps

gap> # Let us remove the number 4
gap> RemoveSet(myset, 4);
gap> myset;
[1, 2, 5, 10]
gap> UniteSet(myset, [1, 1, 5, 6]);
gap> myset;
[1, 2, 5, 6, 10]

One uses Union, Intersection, Difference and Cartesian to perform basic set
operations. Examples:

gap> S := Set([1, 2, 8, 11]);;
gap> T := Set([2, 5, 7, 8]);;
gap> Intersection(S, T);
[2, 8]
gap> Union(S, T);
[1, 2, 5, 7, 8, 11]
gap> Difference(S, T);
[1, 11]
gap> Difference(T, S);
[5, 7]
gap> Difference(S, S);
[]
gap> Cartesian(S, T);
[[1, 2], [1, 5], [1, 7], [1, 8], [2, 2],

[2, 5], [2, 7], [2, 8], [8, 2], [8, 5],
[8, 7], [8, 8], [11, 2], [11, 5],
[11, 7], [11, 8]]

Note that the functions Union, Intersection and Difference create new sets,
so they do not modify the sets given as parameters.

1.3.9 Records

Records allow us to put several objects in the same structure. Let us say that we want
to create a structure for the point (1, 2) of the plane:
gap> point := rec(x := 1, y := 2);;
gap> point.x;
1
gap> point.y;
2
gap> RecNames(point);
["x", "y"]

The function IsBound can be used to test whether our structure contains a given
component:

gap> point := rec(x := 1, y := 2);;
gap> IsBound(point.z);
false

1.4 Other numbers 23

gap> point.z := 3;;
gap> IsBound(point.z);
true
gap> point;
rec(x := 1, y := 2, z := 3)
gap> Unbind(point.z);
gap> point;
rec(x := 1, y := 2)

1.4 Other numbers

1.4.1 Floating–point numbers

GAP supports floating-point numbers in machine format. Note that floating-point
numbers are not rationals. For example, the number 3 is an integer and 3.0 is a
float. Every floating-point number must contain a decimal digit. To get a rational
approximation for a floating-point number, one uses the function Rat. Conversely,
the function Float returns a floating-point number from a rational one. Let us show
some examples:

gap> # An approximation of pi
gap> a := 3.1416;
gap> Rat(a);
3927/1250
gap> # A better approximation of pi
gap> b := 4*Atan(1.0);
3.14159
gap> Rat(b);
817696623/260280919
gap> Float(last);
3.14159
gap> Float(1/4);
0.25
gap> Float(1/3);
0.333333

One possible application of floating-point numbers is related to run times.

Example 1.13. Let us assume that we have a list of strings representing run-times
(in milliseconds). Say that the numbers are 1.0324, 2.4102, 0.2112, and 0.4324. We
need to sum up all these numbers:

gap> times := ["1.0324", "2.4102", "0.2112", "0.4324"];;
gap> List(times, Float);
[1.0324, 2.4102, 0.2112, 0.4324]
gap> Sum(last);
4.0862

24 1 First steps

The function NanosecondsSinceEpoch returns the time (in nanoseconds) that
has passed since some fixed (and unknown) time in the past. This function is appro-
priate for doing time measurements. In the following code, we compute the number
of milliseconds we need to create a big random matrix and compute its determinant:
gap> t0 := NanosecondsSinceEpoch();;
gap> m := RandomMat(123, 123);;
gap> Determinant(m);;
gap> t1 := NanosecondsSinceEpoch();;
gap> # The need the difference between t1 and t0 in milliseconds
gap> mytime := Int(Float((t1-t0)/10^6));;
gap> StringTime(mytime);
" 0:00:15.752"

1.4.2 Finite fields

To create the finite field of ?= elements (here ? is a prime number) we use
the function GF (Galois Field). The characteristic of a field can be obtained with
Characteristic:
gap> GF(2);
GF(2)
gap> GF(4);
GF(2^2)
gap> GF(9);
GF(3^2)
gap> Characteristic(GF(2));
2
gap> Characteristic(GF(9));
3

Let ? be a prime number and let � denote the field with @ = ?= elements for
some positive integer =. The subset

{G ∈ � : G ≠ 0}

is a cyclic group of size @−1; generated, say, by Z . Then � = {0, 1, Z , Z2, . . . , Z@−2},
so each non-zero element of � is a power of Z .

We assume that @ ≤ 216. Each non-zero element of the finite field GF(q) will be
a power of the generator Z(q). The zero of GF(q) will be 0*Z(q) or, equivalently,
Zero(GF(q)). Similarly, One(GF(q)) will be the multiplicative neutral element of
GF(q):
gap> Size(GF(4));
4
gap> Elements(GF(4));
[0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2]
gap> Z(4);

1.4 Other numbers 25

Z(2^2)
gap> Inverse(Z(4));
Z(2^2)^2
gap> Zero(GF(4));
0*Z(2)
gap> 0 in GF(4);
false
gap> Zero(Rationals);
0
gap> One(GF(4));
Z(2)^0
gap> 1 in GF(4);
false
gap> One(Rationals);
1

If ? is a prime number, it is natural to identify the field F? with the ring Z/? of
integers modulo ?. This identification can be made with the function Int:

gap> Elements(GF(5));
[0*Z(5), Z(5)^0, Z(5), Z(5)^2, Z(5)^3]
gap> Int(Z(5)^0);
1
gap> Int(Z(5)^1);
2
gap> Int(Z(5)^2);
4
gap> Int(Z(5)^3);
3

Remark 1.9. The representation for elements of finite fields mentioned before works
for fields of size ≤ 216. Elements of bigger finite fields will use a different represen-
tation:

gap> Random(GF(2^16));
Z(2^16)^233
gap> x := Random(GF(2^17));
z+z4+z5+z6+z7+z8+z9+z10+z11+z13+z15+z16
gap> y := Random(GF(3^11));
2+z2+z4+z6+2z7+2z8+z9+z10

The random element of the finite field F217 of size 217 is

G = I + I4 + I5 + I6 + I7 + I8 + I9 + I10 + I11 + I13 + I15 + I16,

where I is a primitive root that is a generator of the multiplicative group of F217 .
Similarly, the random element of the field F311 is

H = 2 + I2 + I4 + I6 + 2I7 + 2I8 + I9 + I10,

where I is a primitive root.

26 1 First steps

1.4.3 Cyclotomic numbers

We can also work with cyclotomic fields. The function CF creates a cyclotomic
field. To create primitive roots of 1, one uses the function E. More precisely: E(n)
returns 42c8/=. Typically, cyclotomic numbers will be represented as rational linear
combinations of primitive roots of 1. Let us see some examples:
gap> Characteristic(CF(3));
0
gap> Characteristic(CF(4));
0
gap> E(6) in Rationals;
false
gap> E(6) in Cyclotomics;
true
gap> E(3) in CF(3);
true
gap> E(3) in CF(4);
false
gap> E(6);
-E(3)^2

In general, most of the basic arithmetic operations discussed at the beginning of
this chapter can be performed with cyclotomic numbers:
gap> E(3)^2+E(3);
-1
gap> E(5)^5-E(5);
-2*E(5)-E(5)^2-E(5)^3-E(5)^4

The functions Inverse and AdditiveInverse behave well with cyclotomic num-
bers:
gap> AdditiveInverse(E(7));
-E(7)
gap> Inverse(E(7));
E(7)^6

With cyclotomic numbers, we can also compute square roots:
gap> Sqrt(-1);
E(4)
gap> Sqrt(2);
E(8)-E(8)^3
gap> Sqrt(7);
E(28)^3-E(28)^11-E(28)^15+E(28)^19-E(28)^23+E(28)^27

1.5 Permutations

Let = be a positive integer. A permutation in = letters (or symbols) is a bĳective map

1.5 Permutations 27

f : {1, . . . , =} → {1, . . . , =}.

We write S= to denote the set of permutations f : {1, . . . , =} → {1, . . . , =}. For
example, the permutation

f =

(
1 2 3 4

3 1 2 4

)
is the bĳective map

1 ↦→ 3, 2 ↦→ 1, 3 ↦→ 2, 4 ↦→ 4.

We will use the exponential notation, so for example

1f = 3, 2f = 1, 3f = 2, 4f = 3.

Usually, one writes a permutation as a product of disjoint cycles. For example:(
1 2 3 4

2 4 1 3

)
= (1 2 4 3),

(
1 2 3 4 5

2 1 4 3 5

)
= (1 2) (3 4) (5) = (1 2) (3 4).

The permutation
(1 2 3 4 5
2 1 4 3 5

)
= (1 2) (3 4) in GAP is (1,2)(3,4).

The function IsPerm checks whether some object is a permutation. Let us see
some examples:
gap> IsPerm((1,2)(3,4));
true
gap> (1,2)(3,4)(5) = (1,2)(3,4);
true
gap> (1,2)(3,4) = (3,4)(2,1);
true
gap> IsPerm(25);
false
gap> IsPerm([1, 2, 3, 4]);
false

The image of an element i under the natural right action of a permutation p is i^p.
The preimage of the element i under p can be obtained with i/p. In the following
example, we compute the image of 1 and the preimage of 3 by the permutation (123):
gap> 2^(1,2,3);
3
gap> 2/(1,2,3);
1

The composition of permutations will be performed from left to right. For example,

(1 2 3) (2 3 4) = (1 3) (2 4),

as the following code shows:
gap> (1,2,3)*(2,3,4);
(1,3)(2,4)

28 1 First steps

The exponential notation is quite convenient here: If f and g are permutations of
{1, . . . , =}, then

8 (fg) = (8f)g

for all 8 ∈ {1, . . . , =}.
There are two ways of computing inverses of permutations:

gap> Inverse((1,2,3));
(1,3,2)
gap> (1,2,3)^(-1);
(1,3,2)

Example 1.14. The function Permuted returns a new list that contains the elements
of our list permuted according to the given permutation perm:

gap> Permuted([10..15], (1,2));
[11, 10, 12, 13, 14, 15]
gap> p := (1,2,3);;
gap> a := [3, 2, 10, 5];;
gap> b := Permuted(a, (1,2,3));
[10, 3, 2, 5]
gap> # We check that b[x^p] = a[x] for all x
gap> List([1..4], x->b[x^p]) = a;
true

Sometimes it is useful to recover the cycle structure of a given permutation. The
following code needs no further explanation:

gap> p := (1,2,3)(4,5)(8,9);;
gap> Cycles(p, MovedPoints(p));
[[1, 2, 3], [4, 5], [8, 9]]
gap> Cycles(p, [1..LargestMovedPoint(p)]);
[[1, 2, 3], [4, 5], [6], [7], [8, 9]]

Let f be a permutation, written as a product of disjoint cycles. The function
ListPerm returns a list containing 8f at position 8. Conversely, any list representing
a permutation (i.e., of size = containing the integers from 1 to =) can be transformed
into a permutation with the function PermList. Let us see some examples:

gap> # The permutation (12) in two letters
gap> ListPerm((1,2));
[2, 1]
gap> # The permutation (12) in four letters
gap> ListPerm((1,2), 4);
[2, 1, 3, 4]
gap> ListPerm((1,2,3)(4,5));
[2, 3, 1, 5, 4]
gap> ListPerm((1,3));
[3, 2, 1]
gap> PermList([1, 2, 3]);
()
gap> PermList([2, 1]);

1.6 Matrices 29

(1,2)
gap> PermList([3, 4]);
fail
gap> n := 9;;
gap> PermList(Concatenation([2..n], [1]));
(1,2,3,4,5,6,7,8,9)

The sign of a permutationf is the number (−1): , wheref = g1 · · · g: is some fac-
torization of f as a product of transpositions. To compute the sign of a permutation,
one uses the function SignPerm:

gap> SignPerm(());
1
gap> SignPerm((1,2));
-1
gap> SignPerm((1,2,3,4,5));
1
gap> SignPerm((1,2)(3,4,5));
-1
gap> SignPerm((1,2)(3,4));
1

Example 1.15. For a given = we will construct the permutation f ∈ S= given by
9 ↦→ = − 9 + 1. We will write f as a product of disjoint cycles and compute its sign:

gap> n := 5;;
gap> p := PermList(List([1..n], j->n-j+1));
(1,5)(2,4)
gap> SignPerm(p);
1

1.6 Matrices

Amatrix is just a rectangular array of elements. The size of a matrix can be obtained
with DimensionsMat. Sometimes (for example if one has an integer matrix) the
function Display shows matrices in a nice way. LaTeX returns the LATEX command1
needed to write a matrix:

gap> m := [[1, 2, 3], [4, 5, 6]];;
gap> Display(m);
[[1, 2, 3],

[4, 5, 6]]
gap> LaTeX(m);
"\\left(\\begin{array}{rrr}%\n1&2&3\\
\\%\n4&5&6\\\\%\n\\end{array}\\right)%\n"
gap> m[1][1];
1

1 The function LaTeX works for other objects as well.

30 1 First steps

gap> m[1][2];
2
gap> m[2][1];
4
gap> DimensionsMat(m);
[2, 3]

Example 1.16. Let E = (1, 2, 3) and F = (0, 5,−7) be row vectors of Q3. Let us
check that −5E = (−5,−10,−15) and 2E − F = (2,−1, 13). We also check that the
inner product between E and F is E · F = −11:
gap> v := [1, 2, 3];;
gap> w := [0, 5, -7];;
gap> IsRowVector(v);
true
gap> IsRowVector(w);
true
gap> -5*v;
[-5, -10, -15]
gap> 2*v-w;
[2, -1, 13]
gap> v*w;
-11

Example 1.17. With PermutationMat, we can construct a permutation matrix %f
of a given dimension. The matrix %f represents the permutation f acting on the
right by permuting the basis vectors. Here we have an illustrative example:

gap> v := [5, 6, 7, 8];;
gap> p := PermutationMat((1,2,3), 4);;
gap> Display(p);
[[0, 1, 0, 0],

[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]]

gap> Permuted(v, (1,2,3));
[7, 5, 6, 8]
gap> v*p;
[7, 5, 6, 8]

Example 1.18. Let

� =
©«
1 1 1
0 1 1
0 0 1

ª®¬ , � =

(
1 4 7
2 5 8

)
, � =

©«
1 2
6 1
0 2

ª®¬ .
gap> A := [[1, 1, 1], [0, 1, 1], [0, 0, 1]];;
gap> B := [[1, 4, 7], [2, 5, 8]];;
gap> C := [[1, 2], [6, 1], [0, 2]];;

1.6 Matrices 31

We note that the function Display displays matrices in a very nice way (if possible):
gap> A;
[[1, 1, 1], [0, 1, 1], [0, 0, 1]]
gap> Print(A);
[[1, 1, 1], [0, 1, 1], [0, 0, 1]]
gap> Display(A);
[[1, 1, 1],

[0, 1, 1],
[0, 0, 1]]

Let us compute �3, ��, ��, � + �� and 2� − 5��:
gap> Display(A^3);
[[1, 3, 6],

[0, 1, 3],
[0, 0, 1]]

gap> Display(B*C);
[[25, 20],

[32, 25]]
gap> Display(C*B);
[[5, 14, 23],

[8, 29, 50],
[4, 10, 16]]

gap> Display(A+C*B);
[[6, 15, 24],

[8, 30, 51],
[4, 10, 17]]

gap> Display(2*A-5*C*B);
[[-23, -68, -113],

[-40, -143, -248],
[-20, -50, -78]]

To construct a null matrix, one uses the function NullMat. The identity is con-
structed with the function IdentityMat. To construct diagonal matrices, one uses
DiagonalMat. Let us see some examples:
gap> Display(NullMat(2,3));
[[0, 0, 0],

[0, 0, 0]]
gap> Display(IdentityMat(3));
[[1, 0, 0],

[0, 1, 0],
[0, 0, 1]]

gap> Display(DiagonalMat([1,2]));
[[1, 0],

[0, 2]]

For a given matrix m, we know that m[i][j] returns the (8, 9)-th element of our
matrix. To extract submatrices from a matrix, one uses m{rows}{columns} as the
following example shows:
gap> m := [\
> [1, 2, 3, 4, 5],\

32 1 First steps

> [6, 7, 8, 9, 3],\
> [3, 2, 1, 2, 4],\
> [7, 5, 3, 0, 0],\
> [0, 0, 0, 0, 1]];
gap> m{[2, 4, 5]}{[1, 3]};
[[6, 8], [7, 3], [0, 0]]

It is possible to work with matrices with coefficients in arbitrary rings. We start
by working with matrices over the finite field F5 of five elements:

gap> m := [[1, 2, 3], [3, 2, 1], [0, 0, 2]]*One(GF(5));
[[Z(5)^0, Z(5), Z(5)^3],

[Z(5)^3, Z(5), Z(5)^0],
[0*Z(5), 0*Z(5), Z(5)]]

gap> Display(m);
1 2 3
3 2 1
. . 2

Now let us work with 3 × 3 matrices with coefficients in the ring Z/4 of integers
modulo 4. Let us compute the identity of "3 (Z/4):
gap> m := IdentityMat(3, ZmodnZ(4));;
gap> Display(m);
matrix over Integers mod 4:
[[1, 0, 0],

[0, 1, 0],
[0, 0, 1]]

One uses the function Inverse to compute the inverse of an invertible (square)
matrix. This function returns fail if the matrix is not invertible. IsIdentityMat
returns either true if the argument is the identity matrix or false otherwise. We
also use TransposedMat to compute the transpose of a matrix:

gap> m := [[1, -2, -1], [0, 1, 0], [1, -1, 0]];;
gap> Display(Inverse(m));
[[0, 1, 1],

[0, 1, 0],
[-1, -1, 1]]

gap> Inverse([[1, 0], [2, 0]]);
fail
gap> IsIdentityMat(m*Inverse(m));
true
gap> Display(TransposedMat(m)*m);
[[2, -3, -1],

[-3, 6, 2],
[-1, 2, 1]]

Creating a randommatrix is easy: RandomMat returns a random rectangularmatrix
over a given ring, which defaults to Z. With RandomInvertibleMat (resp. with
RandomUnimodularMat) one creates a random square matrix with integer entries
invertible (resp. over the integers).

1.6 Matrices 33

gap> RandomMat(2, 2);
[[2, 0], [4, -1]]
gap> RandomInvertibleMat(2);
[[1, -2], [-1, 0]]
gap> Inverse(last);
[[0, -1], [-1/2, -1/2]]
gap> RandomUnimodularMat(3);
[[5, -15, 28], [-2, 6, -11], [-11, 32, -60]]
gap> Inverse(last);
[[-8, -4, -3], [1, 8, -1], [2, 5, 0]]

Example 1.19. An easy induction exercise shows the Fibonacci sequence (5=) can
be computed using (

0 1
1 1

)=
=

(
5=−1 5=
5= 5=+1

)
, = ≥ 1.

We use this trick to compute (very efficiently) Fibonacci numbers:
gap> MyFibonacci := function(n)
> local m;
> m := [[0, 1], [1, 1]]^n;;
> return m[1][2];
> end;
function(n) ... end
gap> MyFibonacci(10);
55
gap> MyFibonacci(100000);
<integer 259...875 (20899 digits)>

One can easily compute the characteristic and minimal polynomial of a matrix
with CharacteristicPolynomial and MinimalPolynomial, respectively:
gap> a := [[1, 0], [0, 1]];;
gap> b := [[1, 1], [0, 1]];;
gap> CharacteristicPolynomial(Rationals, Rationals, a);
x_1^2-2*x_1+1
gap> MinimalPolynomial(Rationals, a);
x_1-1
gap> CharacteristicPolynomial(Rationals, Rationals, b);
x_1^2-2*x_1+1
gap> MinimalPolynomial(Rationals, b);
x_1^2-2*x_1+1

Let � be an < × = and let 1 be an 1 × = matrix (say, a row vector of length =).
SolutionMat returns (if possible) some G of size 1×< such that G� = 1. If there is
no G such that G� = 1, the function returns fail. Let us see some examples:
gap> # Only one solution
gap> SolutionMat([[1, 2], [3, 4]], [13, 2]);
[-23, 12]
gap> # Infinite solutions
gap> SolutionMat([[1, 2], [2, 4]], [1, 2]);

34 1 First steps

[1, 0]
gap> # No solutions
gap> SolutionMat([[1, 2], [2, 4]], [1, 3]);
fail

The trace of a square matrix is computed with Trace, the determinant with
Determinant, and the rank with Rank. Examples:

gap> m := [[1, 2, 3], [5, 4, 3], [0, 0, 2]];;
gap> Determinant(m);
-12
gap> Trace(m);
7
gap> Rank(m);
3
gap> Rank(NullMat(2, 2));
0
gap> Rank([[1, 2, 3], [4, 5, 6], [6, 7, 8]]);
2
gap> Rank([[1, 2, 3], [4, 5, 6], [6, 7, 9]]);
3

The function NullspaceMat computes the vector space generated by the solutions
of G� = 0, where G is a matrix of size 1 × < and � is a matrix of size < × =.

Remark 1.10. It is very important to remember that GAP always acts on the right.
This means that vectors in general will be row vectors. This is crucial to understand
how functions such as NullspaceMat, Eigenvectors, SolutionMat work.

1.7 Polynomials

One can define polynomial rings with PolynomialRing. Indeterminates are defined
with IndeterminatesOfPolynomialRing. As an example, we define the polyno-
mial Q[G] in one variable G over the ring Q:
gap> A := PolynomialRing(Rationals, ["x"]);;
gap> x := IndeterminatesOfPolynomialRing(A)[1];
x

Let us see some operations on polynomials. One uses the function Value to
evaluate polynomials. With Factors, one obtains the factorization of a polynomial
over the default ring where the polynomial is defined. RootsOfPolynomial returns
all the roots of the polynomial. Here we have some examples:

gap> x := Indeterminate(Rationals);;
gap> DefaultRing(x);
Rationals[x]
gap> IsPolynomial(x^2+x-2);
true
gap> IsPolynomial((x^2+x-2)/(x-1));

1.7 Polynomials 35

true
gap> AsPolynomial((x^2+x-2)/(x-1));
x+2
gap> Value(x^2+x-2, 0);
-2
gap> Value(x^2+x-2, 1);
0
gap> Value(x^2+x-2, -1);
-2
gap> Factors(x^2+x-2);
[x-1, x+2]
gap> RootsOfPolynomial(x^2+x-2);
[1, -2]
gap> Derivative(x^2+2*x+1);
2*x_1+2

The degree of a polynomial can be obtained with Degree, and the coefficients
with the function CoefficientsOfUnivariatePolynomial. The example below
needs no further explanation:
gap> x := Indeterminate(Rationals);;
gap> f := x^5+2*x^3+3*x^2+4;;
gap> Degree(f);
5
gap> CoefficientsOfUnivariatePolynomial(f);
[4, 0, 3, 2, 0, 1]
gap> LeadingCoefficient(f);
1

Example 1.20. Let 5 = 21G2 + 9 and 6 = 20G4 + 10G be polynomials in (Z/30) [G].
Let us check that 5 6 = 0:
gap> x := Indeterminate(Integers mod 30);;
gap> f := 21*x^2+9;;
gap> g := 20*x^4+10*x;;
gap> f*g;
ZmodnZObj(0,30)
gap> IsZero(f*g);
true

Example 1.21. Let us check that 2G2 + 1 divides 6G3 + 10G2 + 3G + 5 in Q[G]:
gap> x := Indeterminate(Rationals);;
gap> (6*x^3+10*x^2+3*x+5) mod (2*x^2+1);
0
gap> (6*x^3+10*x^2+3*x+5)/(2*x^2+1);
3*x+5

Example 1.22. Let us factorize in Q[G] the polynomial 5 = 2G5 + 3G4 − G2 − 2G + 1
and prove that

2G5 + 3G4 − G2 − 2G + 1 = (2G − 1) (G2 + G − 1) (G2 + G + 1).

36 1 First steps

Here is the code:

gap> x := Indeterminate(Rationals);;
gap> Factors(2*x^5+3*x^4-x^2-2*x+1);
[2*x-1, x^2+x-1, x^2+x+1]

Now we see that a cubic root of one is a root of our 5 . Let us try to factorize 5 over
Q(l), where l is a cubic root of one:

gap> Factors(PolynomialRing(Field(E(3)), "x"),\
> 2*x^5+3*x^4-x^2-2*x+1);
[2*x-1, x+(-E(3)), x+(-E(3)^2), x^2+x-1]

Example 1.23. Let 5 = G2+5G+2 and 6 = G4+1. We check that 3 5 −26 is irreducible
(over the integers):

gap> x := Indeterminate(Integers, "x");;
gap> y := Indeterminate(Integers, "y");;
gap> f := x^2+5*x+2;;
gap> g := x^4+1;;
gap> 3*f-2*g;
-2*x^4+3*x^2+15*x+4
gap> IsIrreducible(last);
true

Example 1.24. The polynomial G2 − G + 41 gives a prime for G ∈ {0, . . . , 40}. Let us
check this:

gap> x := Indeterminate(Rationals);;
gap> p := x^2-x+41;;
gap> List([0..40], j->Value(p, j));
[41, 41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151,

173, 197, 223, 251, 281, 313, 347, 383, 421, 461,
503, 547, 593, 641, 691, 743, 797, 853, 911, 971,
1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523,
1601]

gap> Filtered(last, j->not IsPrime(j));
[]

1.8 Vector spaces

GAP can handle finite-dimensional vector spaces over different fields. For example,
we can play with the two-dimensional rational vector space Q2:

gap> V := Rationals^2;
(Rationals^2)
gap> Basis(V);
CanonicalBasis((Rationals^2))
gap> Elements(last);

1.8 Vector spaces 37

[[0, 1], [1, 0]]
gap> Dimension(V);
2

We can perform simple calculations with elements of the vector space:
gap> [1, 2, 3] in V;
false
gap> v := [1, 2];;
gap> v in V;
true
gap> w := [5, -2];;
gap> v-3*w;
[-14, 8]
gap> last in V;
true

We now check, for example, that the set � = {(1, 0), (2, 1)} is a basis of Q2 and
that {(1, 0), (2, 0)} is not:
gap> Basis(V, [[1, 0], [2, 0]]);
fail
gap> B := Basis(V, [[1, 0], [2, 1]]);
Basis((Rationals^2), [[1, 0], [2, 1]])
gap> Elements(last);
[[1, 0], [2, 1]]

Now we write a given vector, say (1, 1), in the basis �:
gap> Coefficients(B, [2, 1]);
[0, 1]
gap> Coefficients(B, [1, 1]);
[-1, 1]

Conversely, there is an easy way to write linear combinations of basis elements:
gap> LinearCombination(B, [5, 3]);
[11, 3]

We can do several interesting things with finite-dimensional vector spaces. We
can, for example, compute the set of all Q-linear maps Q2 → Q2. Here is the code:
gap> hom := Hom(Rationals, V, V);;
gap> Dimension(hom);
4
gap> f := Random(hom);
<linear mapping by matrix, (Rationals^2) -> (Rationals^2)>
gap> Display(f);
LeftModuleHomomorphismByMatrix(CanonicalBasis((Rationals\
^2)), [[0, 0], [-3/2, 0]
], CanonicalBasis((Rationals^2)))

gap> [1, 0]^f;
[0, 0]
gap> [0, 1]^f;
[-3/2, 0]

38 1 First steps

Now we play with the randomly chosen linear map:

gap> K := Kernel(f);;
gap> Dimension(K);
1
gap> Elements(Basis(K));
[[1, 0]]
gap> V/K;
(Rationals^1)
gap> Range(f);
(Rationals^2)
gap> Image(f);
<vector space over Rationals, with 2 generators>
gap> IsInjective(f);
false
gap> IsSurjective(f);
false
gap> Dimension(Range(f));
2
gap> Dimension(Image(f));
1

Let us verify the dimension theorem for vector spaces:

gap> S := Subspace(V, [[1, 2]]);;
gap> T := Subspace(V, [[5, -2]]);;
gap> Dimension(S);
1
gap> Dimension(T);
1
gap> Dimension(Intersection(S, T));
0
gap> Dimension(S+T);
2

1.9 Problems

1.1. Use ChineseRem to find (if possible) the smallest solution of
G ≡ 3 mod 10,

G ≡ 8 mod 15,

G ≡ 5 mod 84.

1.2. Find (if possible) the smallest solution of{
G ≡ 29 mod 52,

G ≡ 19 mod 72.

1.9 Problems 39

1.3. Compute the gcd of 42823 and 6409.

1.4. Find G, H ∈ Z such that

gcd(5033464705, 3138740337) = 5033464705G + 3138740337H.

1.5. Describe the following sequence: 01 = 3, 0=+1 = 30= mod 100.

1.6. Compute 2 · 4 · 6 · · · 200.

1.7. Prove that

1 − 1

2
+ 1

3
− 1

4
+ · · · + 1

9999
− 1

10000
=

1

5001
+ 1

5002
+ · · · + 1

10000
.

1.8. Find the last two digits of 3400.

1.9. Find the roots of G2 + G + 7 ≡ 0 mod < for < ∈ {15, 189}.

1.10. Write a function that returns the binary expansion of an integer. Could you do
this for other bases?

1.11. Use MinimalPolynomial to compute the minimal polynomial of 3 +
√
5 over

the rational numbers.

1.12. For a positive integer : let 0= be the sequence given by 01 = · · · = 0:+1 = 1 and
0= = 0=−: +0=−:−1 for all = > : +1. Write a function depending on : that constructs
the sequence 0=. For more information see http://oeis.org/A103379.

1.13 (Somos sequence). Write a function that returns the =-th term of 0=, where
00 = 01 = 02 = 03 = 1 and

0= =
0=−10=−3 + 02=−2

0=−4

for all = ≥ 4. For more information see http://oeis.org/A006720.

1.14. Write a function that returns c(=), the number of prime numbers ≤ =.

1.15. Use the function Permuted to write a function that shows all the anagrams of
a given word.

1.16. Given a list of non-negative numbers, write a function that displays the his-
togram associated with this list. For example, if the argument is the list [1,4,2],
the function should display

X
XXXX
XX

1.17. Write a function that, given a list of words, returns the longest one.

http://oeis.org/A103379
http://oeis.org/A006720

40 1 First steps

1.18. Write a function that returns the average value of a given list of numbers.

1.19. Write a function that, given a letter, returns true if the letter is a vowel and
false otherwise.

1.20. Use CharacteristicPolynomial to compute the characteristic polynomial

of the matrix � = ©«
0 −1 1
1 2 −1
1 1 0

ª®¬. Can you compute the minimal polynomial of �?

1.21. Use the function QuotientRemainder to compute the quotient and the re-
mainder of 5 = 2G4 + 3G3 + 2G + 4 and 6 = 3G2 + G + 2 in the ring (Z/5) [G].

1.22. Compute 3G101 − 15G16 − 2G7 − 5G4 + 3G3 + 2G2 + 1 mod G3 + 1.

1.23. Prove that G = 2 is the only root in Z/5 of G1000 + 4G + 1 ∈ (Z/5) [G].

1.24. Factorize G4 − 1 in (Z/5) [G] and in (Z/7) [G].

1.25. Prove that G2 − 79G + 1601 gives a prime number for G ∈ {0, 1, . . . , 79}.

1.26. Use Value to evaluate the polynomial GH+G5H3−2G+ H in (G, H) = (123, 567).

1.27. Write the first 50 twin primes.

1.28. FRACTRAN is a programming language invented by J. Conway. A FRAC-
TRAN program is simply an ordered list of positive rational numbers together with
an initial positive integer input =. The program is run by updating the integer = as
follows:

• For the first rational 5 in the list for which = 5 ∈ Z, replace = by = 5 .
• Repeat this rule until no rational number in the list produces an integer when
multiplied by =, then stop.

Write an implementation of the FRACTRAN language.
Starting with = = 2, the program

17

91
,
78

85
,
19

51
,
23

38
,
29

33
,
77

29
,
95

23
,
77

19
,
1

17
,
11

13
,
13

11
,
15

2
,
1

7
, 55

produces the sequence

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770 . . .

In 1987, J. Conway proved that this sequence contains the set {2? : ? prime}. See
https://oeis.org/A007542 for more information.

1.29. The first terms of Conway’s “look and say” sequence are the following:

https://oeis.org/A007542

1.9 Problems 41

1
11
21
1211
111221
312211

After guessing how each term is computed, write a script to create the first terms of
the sequence.

1.30. Write(
1 2 3 4 5 6

2 5 3 4 6 1

)
,

(
1 2 3 4 5 6 7 8 9

2 3 4 5 1 7 8 9 6

)
,

(
1 2 3 4 5

3 2 4 5 1

)
,

as a product of disjoint cycles.

1.31. Write the permutations (1 2 3) (4 5) (1 6 2 5) (3 4 1) and (1 2) (2 4 5) (1 2) as a
product of disjoint cycles.

1.32. Find a permutation g such that

(a) g−1 (1 2) (3 4)g = (5 6) (1 3).
(b) g−1 (1 2 3) (7 8)g = (2 5 7) (1 3).
(c) g−1 (1 2) (3 4) (5 6 7)g = (1 8) (2 3) (4 5 6).

1.33. Compute g−1fg in the following cases:

(a) f = (1 2 3) and g = (3 4).
(b) f = (5 6 7) and g = (1 2) (3 4).

1.34. Let f : {1, . . . , 9} → {1, . . . , 9} be given by 8 ↦→ 10− 8. Write the permutation
f as a product of disjoint cycles.

1.35. For � = ©«
1 2 3
4 5 6
0 2 3

ª®¬ compute

� + � + 1

2!
�2 + 1

3!
�3 + 1

4!
�4.

1.36. Write the function

(=, �) ↦→ � + � + 1

2!
�2 + 1

3!
�3 + · · · + 1

=!
�=.

1.37. For a positive integer = the Hilbert matrix �= is defined as

(�=)8 9 =
1

8 + 9 − 1 , 8, 9 ∈ {1, . . . , =}.

Write the function = ↦→ �=.

42 1 First steps

1.38. Use the function KroneckerProduct to compute(
1 2
3 4

)
⊗ ©«

5 6 7
2 1 0
0 1 9

ª®¬ .
1.39. Let (and) be the vector spaces (over the rationals) generated respectively by
the vectors {(0, 1, 0), (0, 0, 1)} and {(1, 2, 0), (3, 1, 2)}.

(a) Use VectorSpace to create (and) .
(b) Compute dim((), dim()), dim((∩)) and dim((+)).
(c) Compute dim((⊗)) and find a basis of (⊗) .

1.40. Let 8 =
√
−1. Write the coordinates of the vector (1, 0, 1) in the basis given by

(28, 1, 0), (2,−8, 1), (0, 1 + 8, 1 − 8).

1.41. Use Subspaces to count all possible subspaces of the four-dimensional vector
space over the field F3. What about all subspaces of dimension two?

1.42. Count the number of subspaces of F43 such that every element (G1, G2, G3, G4)
of the subspace is such that G21 + G22 + G23 + G24 = 0. Hint: Use the function IsZero.

1.43. Walsh matrices � (2:), : ≥ 1, are defined as follows:

� (2) =
(
1 1
1 −1

)
, � (2:) = � (2) ⊗ � (2:−1), : ≥ 1,

Construct the function = ↦→ � (2=).

1.44. Use the functions Eigenvalues and Eigenvectors to compute the eigenval-
ues and eigenvectors, respectively, of the matrix

� =
©«
1 2 3
4 5 6
6 7 8

ª®¬ ∈ Q3×3.

The function Eigenvectors returns generators of the eigenspaces, where E ≠ 0 is
an eigenvector of � with eigenvalue _ if and only if E� = _E.

1.45. Use the function NullspaceMat to compute the null space of the matrix �
from Problem 1.44. The null space of � is defined as the set of vectors E such that
E� = 0.

1.46. Let 8 =
√
−1. This exercise shows that one can do arithmetic in the ring Z[8]

of Gaussian integers.

(a) Prove that 1 + 38 - 4 + 8.
(b) Apply the division algorithm to U = 2 + 78 and V = 1 + 28.
(c) Compute gcd(7 + 178, 8 − 148).

1.9 Problems 43

(d) Are 2 + 38, 2 and 3 prime elements in Z[8]?
(e) Factorize 8 − 148 and −39 + 488.

1.47. Write a function that checks whether a polynomial is monic, i.e., the leading
coefficient is one. You may want to use the functions One, CoefficientsRing,
DefaultRing, LeadingCoefficient.

1.48. Let be the field of three elements. Find the number of monic irreducible
polynomials in [-] of degree up to six.

1.49. Let 00 = 01 = 1 and 0=+1 = 30= + 40=−1 for = ≥ 1. Compute 0100 and 01000.

1.50. Letl ∈ C be a primitive 7-th root of one. Use the functions CF, Subfields and
GaloisGroup to prove that the lattice of subfields of Q(l) is given by the following
diagram:

Q(l)

Q(l + l2 + l4) Q(l + l−1)

Q

1.51. Let l ∈ C be a 20-th root of one. Can you construct the lattice of subfields of
Q(l)?

Chapter 2
Basic group theory

One of the most remarkable implementations in GAP concerns groups. We can
construct groups from generators as permutations or even matrices with coefficients
in some ring. Moreover, we can define finitely presented groups and make abstract
computations on them.We quickly see that many basic operations can be performed,
such as asking for the order of a group, taking generators, subgroups, indexes,
normalizers, centralizers, centers, etc. We can also investigate group theoretical
properties such as nilpotency, solvability, simplicity, etc.

In this chapter, we will see how to work with some traditional groups such as
symmetric and alternating groups, cyclic groups, dihedral groups, abelian groups
and even linear groups. Indeed, we can represent these groups in, roughly, two ways:
as matrices groups and as permutation groups. Usually, the latter representation has a
better performance during computations.We explore some standard group properties
and construct group homomorphisms, quotients, products, semidirect products, and
conjugacy classes of elements and subgroups. For solvable groups, we performmore
specific computations such as the calculation of Hall subgroups and representatives
of conjugacy classes of subgroups via functions whose algorithms are designed for
this particular class of groups. We will also study group actions on finite sets and
other groups, and compute and analyze properties of orbits and stabilizers in several
examples. In particular, we explore some actions on cosets. Finally, we close the
chapter by introducing group presentations and explaining some examples. We will
show that, althoughwemay get infinite finitely presented groups, we can still perform
computations and examine certain properties.

2.1 Basic constructions

A matrix group is a subgroup of GL= (') for some positive integer = and some ring
'. A permutation group is a subgroup of some S=. One can construct groups from
a list of generators with the function Group.
Example 2.1. With Order, we compute the order of the following groups.

45

46 2 Basic group theory

(a) The group generated by the transposition (1 2).
(b) The group generated by the 5-cycle (1 2 3 4 5).
(c) The group generated by the permutations {(1 2), (1 2 3 4 5)}.

Here is the code:

gap> Order(Group([(1,2)]));
2
gap> Order(Group([(1,2,3,4,5)]));
5
gap> Order(Group([(1,2), (1,2,3,4,5)]));
120

For a positive integer =, let �= be the (multiplicative) cyclic group of order =.
One can construct cyclic groups with CyclicGroup. With no extra arguments, this
function returns an abstract representation of a cyclic group.

Example 2.2. Let us construct the cyclic group �2 of size two as an abstract group,
as a matrix group and as a permutation group:

gap> CyclicGroup(2);
<pc group of size 2 with 1 generators>
gap> CyclicGroup(IsMatrixGroup, 2);
Group([[[0, 1], [1, 0]]])
gap> FieldOfMatrixGroup(last);
Rationals
gap> CyclicGroup(IsPermGroup, 2);
Group([(1,2)])

We can also specify over which field we construct matrix groups:

gap> C5 := CyclicGroup(IsMatrixGroup, GF(2), 5);;
gap> Display(Random(C5));
1
. 1 . . .
. . 1 . .
. . . 1 .
. . . . 1

gap> Display(Random(C5));
. . 1 . .
. . . 1 .
. . . . 1
1
. 1 . . .

gap> FieldOfMatrixGroup(C5);
GF(2)

With TrivialGroup, one constructs the trivial group:

gap> TrivialGroup(IsPermGroup);
Group(())
gap> TrivialGroup();
<pc group of size 1 with 0 generators>

2.1 Basic constructions 47

Do not use the equal sign (=) to check whether a group is trivial or not:

gap> TrivialGroup(IsPermGroup) = TrivialGroup();
false
gap> IsTrivial(TrivialGroup(IsPermGroup));
true
gap> IsTrivial(TrivialGroup());
true

When using GAP in teaching, it is often desirable to have a friendly output. This
can be achieved by turning on the teaching mode:

gap> TeachingMode(true);
#I Teaching mode is turned ON
gap> Elements(CyclicGroup(5));
[<identity ...>, a, a^2, a^3, a^4]

We can also construct finite (elementary) abelian groups. Note that here our
groups are multiplicative.

Example 2.3. We construct the multiplicative group �4 using the function to con-
struct abelian group:

gap> TeachingMode(false);
#I Teaching mode is turned OFF
gap> AbelianGroup([4]);
<pc group of size 4 with 1 generators>
gap> Elements(last);
[<identity> of ..., f1, f2, f1*f2]

Again we can use the teaching mode:

gap> TeachingMode(true);
#I Teaching mode is turned ON
gap> AbelianGroup([4]);
<fp group of size 4 on the generators [f1]>
gap> Elements(last);
[<identity ...>, f1, f1^2, f1^3]

More generally, we can construct any finite abelian group by specifying the orders
of the cyclic factors.

Example 2.4. We construct a big finite abelian group:

gap> AbelianGroup([1234, 567890]);;
gap> StructureDescription(last);
"C350388130 x C2"

Example 2.5. We construct the group �2
2 × �3:

48 2 Basic group theory

gap> TeachingMode(true);
#I Teaching mode is turned ON
gap> A := AbelianGroup([2, 2, 3]);
<fp group of size 12 on the generators [f1, f2, f3]>
gap> Elements(A);
[<identity ...>, f1, f2, f3, f1*f2, f1*f3, f2*f3, f3^2,
f1*f2*f3, f1*f3^2, f2*f3^2, f1*f2*f3^2]

gap> StructureDescription(A);
"C6 x C2"

For concrete calculations, we may use a permutation representation of our abelian
group:

gap> A := AbelianGroup(IsPermGroup, [2, 2, 3]);
Group([(1,2), (3,4), (5,6,7)])
gap> for a in A do
> Display(a);
> od;
()
(5,7,6)
(5,6,7)
(3,4)
(3,4)(5,7,6)
(3,4)(5,6,7)
(1,2)
(1,2)(5,7,6)
(1,2)(5,6,7)
(1,2)(3,4)
(1,2)(3,4)(5,7,6)
(1,2)(3,4)(5,6,7)

As before, we use IsPermGroup to construct the abelian group �2
2 ×�3 as a permu-

tation group.

Why permutation groups? Their elementsmay be easier tomanipulate, and several
algorithms are particularly good for permutation groups.

Example 2.6. We construct the elementary abelian group �3
2 and verify that the

square of every element of the group is the identity:

gap> ElementaryAbelianGroup(IsPermGroup, 8);
Group([(1,2), (3,4), (5,6)])
gap> Elements(last);
[(), (5,6), (3,4), (3,4)(5,6), (1,2), (1,2)(5,6), (1,2)(3,4),

(1,2)(3,4)(5,6)]
gap> Number(last, x->IsOne(x^2));
8

For a positive integer =, the dihedral group of order 2= is the group

D2= = 〈A, B | BAB = A−1, B2 = A= = 1〉.

2.1 Basic constructions 49

To construct dihedral groups, we use DihedralGroup. By default, the function
returns an abstract representation of a dihedral group. As we did before in the case
of abelian groups, we can construct dihedral groups as permutation groups.

Example 2.7. Let us construct D6, compute its order and check that it is not an
abelian group:

gap> D6 := DihedralGroup(6);;
gap> Order(D6);
6
gap> IsAbelian(D6);
false

We display the elements of the group we have constructed and contrast this with the
representation of the elements when we construct D6 as a permutation group:

gap> Elements(DihedralGroup(6));
[<identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2]
gap> Elements(DihedralGroup(IsPermGroup, 6));
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

When the teaching mode is active, we get a more familiar representation of the
dihedral groups:

gap> TeachingMode(true);
#I Teaching mode is turned ON
gap> D6 := DihedralGroup(6);
<fp group of size 6 on the generators [r, s]>
gap> Elements(D6);
[<identity ...>, r^-1, r, s, r*s, s*r]
gap> for x in D6 do
> Print("The element ", x, " has order ", Order(x), "\n");
> od;
The element <identity ...> has order 1
The element r has order 3
The element r^-1 has order 3
The element s has order 2
The element r*s has order 2
The element s*r has order 2

One can construct the symmetric group S= of bĳective functions of the set
{1, . . . , =} with SymmetricGroup. To construct the alternating group A= we use the
command AlternatingGroup.

Example 2.8. Let us construct S4 and A4 and display their elements:

gap> S4 := SymmetricGroup(4);;
gap> A4 := AlternatingGroup(4);;
gap> Elements(A4);
[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4),

(1,3,2), (1,3,4), (1,3)(2,4), (1,4,2), (1,4,3),
(1,4)(2,3)]

gap> Elements(S4);

50 2 Basic group theory

[(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2),
(1,2)(3,4), (1,2,3), (1,2,3,4), (1,2,4,3), (1,2,4),
(1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4),
(1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4),
(1,4,2,3), (1,4)(2,3)]

Now we check if some specific permutations belong to these groups:
gap> (1,2,3) in A4;
true
gap> (1,2) in A4;
false
gap> (1,2,3)(4,5) in S4;
false

Example 2.9. Let us compute the order of the elements of the group S5:
gap> S5 := SymmetricGroup(5);;
gap> Collected(List(S5, Order));
[[1, 1], [2, 25], [3, 20], [4, 30], [5, 24],

[6, 20]]

Example 2.10. Let us show that

� =

〈(
0 8
8 0

)
,

(
0 1
−1 0

)〉
is a non-abelian group of order eight not isomorphic to a dihedral group. Recall that
the imaginary unit 8 =

√
−1 is represented as E(4). To check that� is not isomorphic

to D8 we show that � contains a unique element of order two and that D8 has five
elements of order two:
gap> a := [[0, E(4)], [E(4), 0]];;
gap> b := [[0, 1], [-1, 0]];;
gap> G := Group([a, b]);;
gap> Order(G);
8
gap> IsAbelian(G);
false
gap> Number(G, x->Order(x) = 2);
1
gap> Number(DihedralGroup(8), x->Order(x) = 2);
5

We can factorize elements of a group in terms of the generating set used.

Example 2.11. It is known that

� = 〈(1 2), (1 3)〉 ' S3.

We decompose every element of our group in terms of the generators G1 = (1 2) and
G2 = (2 3). For example,

2.1 Basic constructions 51

(1 2 3) = (2 3) (1 2) = G2G1,

as the following code shows:

gap> G := Group([(1,2), (2,3)]);;
gap> Factorization(G, (1,2));
x1
gap> Factorization(G, (2,3));
x2
gap> Factorization(G, (1,2,3));
x2*x1

Note that the function GeneratorsOfGroup returns, by default, a different set of
generators:

gap> S3 := SymmetricGroup(3);;
gap> GeneratorsOfGroup(S3);
[(1,2,3), (1,2)]
gap> Factorization(S3, (1,2,3));
x1
gap> Factorization(S3, (1,2));
x2
gap> Factorization(S3, (2,3));
x1*x2

Example 2.12. The Mathieu group M11 is a simple group of order 7920. It can be
defined as the subgroup of S11 generated by the permutations

(1 2 3 4 5 6 7 8 9 10 11), (3 7 11 8) (4 10 5 6).

Let us constructM11 and check with IsSimple that it is simple:

gap> a := (1,2,3,4,5,6,7,8,9,10,11);;
gap> b := (3,7,11,8)(4,10,5,6);;
gap> M11 := Group([a, b]);;
gap> Order(M11);
7920
gap> IsSimple(M11);
true

The command MathieuGroup can also be used to construct Mathieu groups:

gap> MathieuGroup(11);
Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6)])

Example 2.13. The function Group also constructs infinite groups. For example, let
us consider two matrices with finite order and such that their product has infinite
order:

gap> a := [[0, -1], [1, 0]];;
gap> b:= [[0, 1], [-1, -1]];;
gap> Order(a);

52 2 Basic group theory

4
gap> Order(b);
3
gap> Order(a*b);
infinity
gap> Order(Group([a, b]));
infinity

Remark 2.1. Not always the computer will be able to determine whether an element
has finite or infinite order.

With Subgroup, we construct the subgroup of a group generated by a list of
elements. The index of a subgroup can be computed with Index.

Example 2.14. Let us check that the subgroup of S3 generated by (1 2) is {id, (1 2)}
and has index three, and the subgroup generated by (1 2 3) is {id, (1 2 3), (1 3 2)}
and has index two:

gap> S3 := SymmetricGroup(3);;
gap> Elements(Subgroup(S3, [(1,2)]));
[(), (1,2)]
gap> Index(S3, Subgroup(S3, [(1,2)]));
3
gap> Elements(Subgroup(S3, [(1,2,3)]));
[(), (1,2,3), (1,3,2)]
gap> Index(S3, Subgroup(S3, [(1,2,3)]));
2

The function AllSubgroups returns the list of subgroups of a given group:

gap> AllSubgroups(S3);
[Group(()), Group([(2,3)]), Group([(1,2)]),

Group([(1,3)]), Group([(1,2,3)]),
Group([(1,2,3), (2,3)])]

Recall that a subset of� is said to be normal if is invariant under conjugation
by elements of �, that is 6 6−1 ⊆ for all 6 ∈ �. If is a normal subgroup of �,
then �/ is a group.

Example 2.15. With IsSubgroup we check that A10 is a subgroup of S10. With
IsNormal we see that A10 is a subset of S10 invariant under conjugation:

gap> S10 := SymmetricGroup(10);;
gap> A10 := AlternatingGroup(10);;
gap> IsSubgroup(S10, A10);
true
gap> IsNormal(S10, A10);
true
gap> Index(S10, A10);
2

2.1 Basic constructions 53

Since A10 is a normal subgroup of S10, it is possible to construct the quotient group
S10/A10:

gap> Q := S10/A10;;
gap> StructureDescription(Q);
"C2"

We see that S9 is a subgroup of S10 that is not normal:

gap> S9 := SymmetricGroup(9);;
gap> IsSubgroup(S10, S9);
true
gap> IsNormal(S10, S9);
false

Example 2.16. Let us show that in D8 there are subgroups � and such that is
normal in �, � is normal in D8, but is not normal in D8:

gap> D8 := DihedralGroup(IsPermGroup, 8);;
gap> Elements(D8);
[(), (2,4), (1,2)(3,4), (1,2,3,4),

(1,3), (1,3)(2,4), (1,4,3,2),
(1,4)(2,3)]

gap> K := Subgroup(D8, [(2,4)]);;
gap> Elements(K);
[(), (2,4)]
gap> H := Subgroup(D8, [(1,2,3,4)^2, (2,4)]);;
gap> Elements(H);
[(), (2,4), (1,3), (1,3)(2,4)]
gap> IsNormal(D8, K);
false
gap> IsNormal(D8, H);
true
gap> IsNormal(H, K);
true

Example 2.17. Let us compute quotient groups of the cyclic group �4. Since every
subgroup of �4 is normal, we can use AllSubgroups to check that �4 contains a
unique non-trivial proper subgroup . The quotient �4/ has two elements:

gap> C4 := CyclicGroup(IsPermGroup, 4);;
gap> AllSubgroups(C4);
[Group(()), Group([(1,3)(2,4)]),

Group([(1,2,3,4)])]
gap> K := last[2];;
gap> Order(C4/K);
2

Recall that for a positive integer =, the generalized quaternion group is the group

&4= = 〈G, H | G2= = H4 = 1, G= = H2, H−1GH = G−1〉.

54 2 Basic group theory

We use QuaternionGroup to construct generalized quaternion groups. As we did
before, we can use the filter IsPermGroup (resp. IsMatrixGroup) to obtain gener-
alized quaternion groups as permutation (resp. matrix) groups.

Example 2.18. Let us check that each subgroup of the quaternion group &8 of order
eight is normal and that &8 is non-abelian:

gap> Q8 := QuaternionGroup(IsMatrixGroup, 8);;
gap> Display(Random(Q8));
[[0, -1, 0, 0],

[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, -1, 0]]

gap> IsAbelian(Q8);
false
gap> ForAll(AllSubgroups(Q8), x->IsNormal(Q8, x));
true

If � is a group, its center is the subgroup

/ (�) = {G ∈ � : GH = HG for all H ∈ �}.

The commutator of two elements G, H ∈ � is defined as [G, H] = G−1H−1GH. The
commutator subgroup, or derived subgroup of �, is the subgroup [�,�] generated
by all the commutators of �.

Example 2.19. We compute the commutator of two randomly chosen elements of
the dihedral groupD26 of size 26, verify that the center ofD26 is trivial and compute
[D26,D26] with the function DerivedSubgroup:
gap> TeachingMode(true);
#I Teaching mode is turned ON
gap> D26 := DihedralGroup(26);;
gap> x := Random(D26);
r^4*s
gap> y := Random(D26);
r^5
gap> Comm(x,y); # This computes [x,y]
r^-3
gap> IsTrivial(Center(D26));
true
gap> der := DerivedSubgroup(D26);;
gap> StructureDescription(der);
"C13"

Example 2.20. Recall that a group � is said to be perfect if [�,�] = �. We present
some examples of perfect groups:

ap> IsPerfect(AlternatingGroup(5));
true
gap> IsPerfect(SymmetricGroup(5));

2.1 Basic constructions 55

false
gap> IsPerfect(SL(2,7));
true
gap> IsPerfect(GL(2,7));
false

With CommutatorSubgroup we can compute the commutator subgroup

[�,] = 〈[ℎ, :] : ℎ ∈ �, : ∈ 〉

of the subgroups � and of a given group �.

Example 2.21. We compute the commutator subgroup of two randomly chosen sub-
groups of D16:

gap> TeachingMode(true);
#I Teaching mode is turned ON
gap> D16 := DihedralGroup(16);;
gap> all := AllSubgroups(D16);
[Group([]), Group([r^4]), Group([s]), Group([r^2*s]),

Group([s*r^2]), Group([s*r^4]), Group([r*s]),
Group([s*r]), Group([r^3*s]), Group([s*r^3]),
Group([r^-2]), Group([s, r^4]), Group([s*r^2, r^4]),
Group([r*s, r^4]), Group([s*r, r^4]), Group([r^-2, s]),
Group([r^-2, r*s]), Group([r]), Group([r, s])]

gap> H := Random(all);
Group([s*r^3])
gap> K := Random(all);
Group([s*r^4])
gap> CommutatorSubgroup(H, K);
Group([r^-2])

Recall that if � is a group and 6 ∈ �, the conjugacy class of 6 in � is the subset
6� = {G−16G : G ∈ �}. The centralizer of 6 in � is the subgroup

�� (6) = {G ∈ � : G6 = 6G}.

To compute conjugacy classes, we have the functions ConjugacyClasses and
ConjugacyClass; the centralizer can be computed with Centralizer.

Example 2.22. Let us check that S3 contains three conjugacy classes with represen-
tatives id, (1 2) and (1 2 3), so that

(1 2)S3 = {(1 2), (1 3), (2 3)}, (1 2 3)S3 = {(1 2 3), (1 3 2)}.

gap> S3 := SymmetricGroup(3);;
gap> ConjugacyClasses(S3);
[()^G, (1,2)^G, (1,2,3)^G]
gap> Elements(ConjugacyClass(S3, (1,2)));
[(2,3), (1,2), (1,3)]

56 2 Basic group theory

gap> Elements(ConjugacyClass(S3, (1,2,3)));
[(1,2,3), (1,3,2)]

Let us check that �S3 ((1 2 3)) = {id, (1 2 3), (1 3 2)}:
gap> Elements(Centralizer(S3, (1,2,3)));
[(), (1,2,3), (1,3,2)]

Example 2.23. In this example, we use the function Representative to construct a
list of representatives of conjugacy classes of A4:

gap> A4 := AlternatingGroup(4);;
gap> List(ConjugacyClasses(A4), Representative);
[(), (1,2)(3,4), (1,2,3), (1,2,4)]

With the function IsConjugate we can check whether two elements (or two
subgroups) are conjugate. If two elements 6 and ℎ are conjugate, we want to find an
element G such that 6 = G−1ℎG. For that purpose, we use RepresentativeAction.

Example 2.24. Let us check that (1 2 3) and (1 3 2) = (1 2 3)2 are not conjugate in
the alternating group A4:

gap> A4 := AlternatingGroup(4);;
gap> g := (1,2,3);;
gap> IsConjugate(A4, g, g^2);
false

Note that (1 2 3) and (1 3 2) are conjugate both in S4 and A5:

gap> S4 := SymmetricGroup(4);;
gap> A5 := AlternatingGroup(5);;
gap> IsConjugate(S4, g, g^2);
true
gap> IsConjugate(A5, g, g^2);
true

Now we find elements G ∈ S4 and H ∈ A5 such that

(1 2 3)G = G−1 (1 2 3)G = (1 3 2), (1 2 3)H = H−1 (1 2 3)H = (1 3 2).

For that purpose, we use RepresentativeAction:

gap> x := RepresentativeAction(S4, g, g^2);
(2,3)
gap> x^(-1)*g*x = g^2;
true
gap> g^x = g^2;
true
gap> y := RepresentativeAction(A5, g, g^2);
(2,3)(4,5)
gap> g^y = g^2;
true

2.1 Basic constructions 57

Note that theremight be several possible elements G ∈ S4 such that (1 2 3)G = (1 3 2).
The function RepresentativeAction returns one of such possible G.

Example 2.25. We can use RepresentativeAction to find an element of the group
that conjugates a certain tuple (G1, . . . , G=) to (H1, . . . , H=), as we show below:

gap> G := SymmetricGroup(4);;
gap> x1 := (1,2,3);;
gap> x2 := (1,3);;
gap> y1 := (2,3,4);;
gap> y2 := (3,4);;
gap> RepresentativeAction(G, [x1, x2], [y1, y2], OnTuples);
(1,4)
gap> RepresentativeAction(G, [x1, x2], [x2, x2], OnTuples);
fail

Example 2.26. It is well-known that the converse of Lagrange’s theorem does not
hold. The following example is based on [5]. We show that A4 has no subgroups of
order six with several different methods.

A naive idea to prove that A4 has no subgroups of order six is to study all the(12
6

)
= 924 subsets of A4 of size six and check that none of these subsets is a group:

gap> A4 := AlternatingGroup(4);;
gap> k := 0;;
gap> for x in Combinations(Elements(A4), 6) do
> if Size(Subgroup(A4, x)) = Size(x) then
> k := k+1;
> fi;
> od;
gap> k;
0

The following code shows an equivalentway of performing the previous computation:

gap> ForAny(Combinations(Elements(A4), 6),\
> x->Size(Subgroup(A4, x)) = Size(x));
false

Now we use a similar idea. Every subgroup of order six contains exactly five
non-identity elements. So we see that none of the

(11
5

)
= 462 subsets of A4 with five

elements can generate a subgroup of order six. In the subsequent code, we do not
use Combinations. Instead, combinations will be generated by using an iterator.

gap> k := 0;;
gap> for t in IteratorOfCombinations(\
> Filtered(A4, x->not x = ()), 5) do
> if Size(Subgroup(A4, t)) = Size(t)+1 then
> k := k+1;
> fi;
> od;
gap> k;
0

58 2 Basic group theory

In the previous code, we used an iterator. Iterators provide the possibility to loop
through the elements of a collection without needing to store them.

Here we have another idea: if A4 has a subgroup of order six, then the index
of this subgroup in A4 is two. The function SubgroupsOfIndexTwo returns a list
with all index-two subgroups of a given group. The function belongs to the package
LAGUNA:

gap> LoadPackage("LAGUNA");;

This package was written by V. Bovdi, O. Konovalov, R. Rossmanith and C. Schnei-
der, and provides functions for group algebras and their associated Lie algebras.

We now check that A4 has no subgroups of index two:

gap> SubgroupsOfIndexTwo(A4);
[]

Of course, we can simply construct all subgroups and check that there are no
subgroups of order six:

gap> List(AllSubgroups(A4), Order);
[1, 2, 2, 2, 3, 3, 3, 3, 4, 12]
gap> 6 in last;
false

In fact, it is enough to construct all conjugacy classes of subgroups:

gap> c := ConjugacyClassesSubgroups(A4);;
gap> List(c, x->Order(Representative(x)));
[1, 2, 3, 4, 12]
gap> 6 in last;
false

Moreover, since a subgroup of index two is necessarily maximal, it is enough to look
for conjugacy classes of maximal subgroups:

gap> cm := ConjugacyClassesMaximalSubgroups(A4);;
gap> List(cm, x->Order(Representative(x)));
[4, 3]
gap> 6 in last;
false

Another approach is to use conjugacy classes of elements in A4. Indeed, the
conjugacy classes of A4 are:

{id}, {(2 4 3), (1 2 3), (1 3 4), (1 4 2)},
{(1 2) (3 4), (1 3) (2 4), (1 4) (2 3)}, {(2 3 4), (1 2 4), (1 3 2), (1 4 3)}.

This is how we construct the conjugacy classes of A4:

gap> ConjugacyClasses(A4);
[()^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,4)^G]
gap> Elements(ConjugacyClass(A4, ()));
[()]

2.1 Basic constructions 59

gap> Elements(ConjugacyClass(A4, (1,2)(3,4)));
[(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)]
gap> Elements(ConjugacyClass(A4, (1,2,3)));
[(2,4,3), (1,2,3), (1,3,4), (1,4,2)]
gap> Elements(ConjugacyClass(A4, (1,2,4)));
[(2,3,4), (1,2,4), (1,3,2), (1,4,3)]

Assume that A4 has a subgroup of order six. Then has index two in A4 and
hence it is normal in A4. This means that is a union of conjugacy classes of A4

and that {1} ⊆ . This is a contradiction!
Let us now use the commutator to prove that A4 has no subgroups of order six.

If there exists a subgroup of order six, then is normal in A4 and the quotient
A4/ is cyclic of order two. This implies that

[A4,A4] = {id, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)},

is contained in , a contradiction since 4 does not divide 6:
gap> DerivedSubgroup(A4);
Group([(1,4)(2,3), (1,3)(2,4)])
gap> Elements(last);
[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)]

One more variation. If is a subgroup of A4 of order six, then there are two
possibilities: either ' S3 or ' �6. The group A4 has no elements of order six:
gap> Filtered(A4, x->Order(x) = 6);
[]

Then ' S3 and hence contains three elements of order two. Thus

{id, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)}

is a subgroup of of order four, which contradicts Lagrange’s theorem.

To study isomorphisms between finite groups one uses IsomorphismGroups.
This function returns fail if the groups are not isomorphic, or some isomorphism
otherwise. The following trick works as an isomorphism test:
gap> S3 := SymmetricGroup(3);;
gap> C6 := CyclicGroup(6);;
gap> C2xC3 := AbelianGroup([2, 3]);;
gap> not IsomorphismGroups(S3, C6) = fail;
false
gap> not IsomorphismGroups(C2xC3, C6) = fail;
true

Since we use this verification several times, we can turn the trick into a function:
gap> AreIsomorphic := function(G, H)
> return not IsomorphismGroups(G, H) = fail;
> end;
function(G, H) ... end

60 2 Basic group theory

gap> AreIsomorphic(C2xC3, C6);
true
gap> AreIsomorphic(S3, C6);
false

Example 2.27. Let us construct a group � such that � = 〈0〉 × 〈1〉 with �4 ' 〈0〉
and �2 ' 〈1〉. We also prove that

〈02〉 ' 〈1〉, �/〈02〉 ; �/〈1〉.

Here is the code that shows our claims:

gap> G := AbelianGroup(IsPermGroup, [4, 2]);
Group([(1,2,3,4), (5,6)])
gap> K := Subgroup(G, [(5,6)]);;
gap> L := Subgroup(G, [(1,2,3,4)^2]);;
gap> IsomorphismGroups(K, L);
[(5,6)] -> [(1,3)(2,4)]
gap> IsomorphismGroups(G/K, G/L);
fail

One can show that:

〈02〉 ' 〈1〉 ' �2, �/〈02〉 ' �4, �/〈1〉 ' �2 × �2.

We can also work with classical groups. Use

gap> ?classical groups

to get more information.

Example 2.28. One can use the function GL to construct some general linear groups
such as GL= (Z), GL= (Z/<) and GL= (F@):
gap> Order(GL(2,Integers));
infinity
gap> Order(GL(2,ZmodnZ(4)));
96
gap> Order(GL(2,GF(4)));
180
gap> Order(GL(3,GF(4)));
181440

Similarly, with SL one constructs SL= (Z), SL= (Z/<) and SL= (F@):
gap> Order(SL(2,GF(3)));
24
gap> Order(SL(2,Integers));
infinity
gap> Order(SL(2,ZmodnZ(4)));
48
gap> Order(SL(2,GF(4)));
60

2.1 Basic constructions 61

WewriteGL= (@) to denoteGL= (F@).We use the same notation for other classical
groups. Following this convenient notation for constructing linear groups over finite
fields, we can specify the size of the field:

gap> G := GL(3,4);;
gap> Size(G);
181440
gap> Center(G);
<group of 3x3 matrices over GF(2^2)>
gap> StructureDescription(last);
"C3"
gap> IsSubgroup(G, SL(3,4));
true
gap> DerivedSubgroup(G) = SL(3,4);
true

We now compute the quotient of GL3 (4) by its center. Note that GAP will return
a permutation representation of this quotient. Also here StructureDescription

shows something that might be different from what we expect:

gap> Q := GL(3,4)/Center(GL(3,4));;
gap> Order(Q);
60480
gap> StructureDescription(Q);
"PSL(3,4) : C3"
gap> not IsomorphismGroups(Q, PGL(3,4)) = fail;
true

Since the function IsomorphismGroups does not return fail, our groups are indeed
isomorphic.

It is known that the commutator of a finite group is not always equal to the set of
commutators, as we show in the following example based on [8]:

Example 2.29. Let � be the subgroup of S16 generated by the permutations

0 = (1 3) (2 4), 1 = (5 7) (6 8),
2 = (9 11) (10 12), 3 = (13 15) (14 16),
4 = (1 3) (5 7) (9 11), 5 = (1 2) (3 4) (13 15),
6 = (5 6) (7 8) (13 14) (15 16), ℎ = (9 10) (11 12).

We show that [�,�] has order 16:
gap> a := (1,3)(2,4);;
gap> b := (5,7)(6,8);;
gap> c := (9,11)(10,12);;
gap> d := (13,15)(14,16);;
gap> e := (1,3)(5,7)(9,11);;
gap> f := (1,2)(3,4)(13,15);;
gap> g := (5,6)(7,8)(13,14)(15,16);;
gap> h := (9,10)(11,12);;
gap> G := Group([a,b,c,d,e,f,g,h]);;

62 2 Basic group theory

gap> D := DerivedSubgroup(G);;
gap> Size(D);
16

We now show that the set of commutators has 15 elements. In particular, we show
that 23 ∈ [�,�] and that 23 is not a commutator:

gap> Size(Set(Cartesian(G, G), Comm));
15
gap> c*d in Difference(D, Set(Cartesian(G, G), Comm));
true

To conclude this section, we show how to use SylowSubgroup to compute with
Sylow subgroups.

Example 2.30. We compute a Sylow subgroup of the linear group SL4 (16):
gap> G := SL(4,16);;
gap> Order(G);
1148120010326016000
gap> SylowSubgroup(G, 2);
<group of 4x4 matrices of size 16777216 over GF(2^4)>

The calculation of Sylow subgroups of SL4 (16) is about 30% faster when using
a permutation representation:

gap> G := SL(4,16);;
gap> n := Order(G);;
gap> List(PrimeDivisors(n), p->SylowSubgroup(G, p));;time;
9605
gap> G := SL(IsPermGroup, 4, 16);;
gap> List(PrimeDivisors(n), p->SylowSubgroup(G, p));;time;
6192

Example 2.31. Let� = SL2 (3), % ∈ Syl2 (�) and& ∈ Syl3 (�). The following code
shows that � = %&:

gap> G := SL(2,3);;
gap> P := SylowSubgroup(G, 2);;
gap> Q := SylowSubgroup(G, 3);;
gap> PQ := List(Cartesian(P,Q), x->x[1]*x[2]);;
gap> Size(PQ) = Size(G);
true

We now compute all Sylow 3-subgroups of �:

gap> sylows3 := ConjugacyClassSubgroups(G, Q);;
gap> Size(sylows3);
4
gap> for x in sylows3 do
> Display(x);
> od;
Group([[[Z(3)^0, Z(3)^0], [0*Z(3), Z(3)^0]]])

2.2 Group actions 63

Group([[[Z(3), Z(3)^0], [Z(3), 0*Z(3)]]])
Group([[[0*Z(3), Z(3)^0], [Z(3), Z(3)]]])
Group([[[Z(3)^0, 0*Z(3)], [Z(3), Z(3)^0]]])

The function Normalizer returns the normalizer of a subgroup:

gap> N := Normalizer(G, Q);;
gap> Index(G, N);
4

Indeed, # is a Borel subgroup of �, and we can check that it consists of the upper-
triangular matrices of determinant one:

gap> for x in N do
> Display(x);
> Print("--\n");
> od;
1 .
. 1

--
1 2
. 1

--
1 1
. 1

--
2 .
. 2

--
2 1
. 2

--
2 2
. 2

--
gap> N = Filtered(Elements(G), x->x[2][1] = 0*Z(3));
true

2.2 Group actions

In this section, we present several examples of group actions. In different well-known
situations, we compute orbits, stabilizers, cores, and permutation representations.

Example 2.32. We now explore the case of S3 acting by right multiplication on the
set of right cosets of A3 in S3:

gap> S3 := SymmetricGroup(3);;
gap> A3 := AlternatingGroup(3);;
gap> omega := RightCosets(S3, A3);
[RightCoset(Alt([1 .. 3]),()),

64 2 Basic group theory

RightCoset(Alt([1 .. 3]),(2,3))]
gap> for x in omega do
> Display(Elements(x));
> od;
[(), (1,2,3), (1,3,2)]
[(2,3), (1,2), (1,3)]
gap> Size(Orbits(S3, omega, OnRight));
1
gap> Stabilizer(S3, Random(omega), OnRight);
Group([(1,2,3)])

Example 2.33. We now study the natural action of the dihedral group D8 of order
eight on the vertex set {1, 2, 3, 4} of the square:

3

2

1

4

We show, for example, that the action is transitive:

gap> D8 := DihedralGroup(IsPermGroup, 8);;
gap> GeneratorsOfGroup(D8);
[(1,2,3,4), (2,4)]
gap> # Here r=(1,2,3,4) and s=(2,4)
gap> Orbits(D8, [1..4]);
[[1, 2, 3, 4]]
gap> IsTransitive(D8, [1..4]);
true
gap> Stabilizer(D8, 1);
Group([(2,4)])

We now compute the core of the action, i.e. the set of elements of D8 acting trivially
on {1, 2, 3, 4}:
gap> Filtered(D8, g->ForAll([1..4], x->x^g = x));
[()]

Example 2.34. Let � = GL2 (5) and + = F25. We study the natural action (by right
multiplication) of � on + :

gap> G := GL(2,5);;
gap> omega := AsList(GF(5)^2);;
gap> Size(Orbits(G, omega));
2
gap> v := Random(omega);
[Z(5)^3, Z(5)^2]
gap> Orbit(G, v);
[[Z(5)^3, Z(5)^2], [Z(5)^0, Z(5)^2],

2.2 Group actions 65

[Z(5)^3, Z(5)^3], [Z(5), Z(5)^2],
[0*Z(5), Z(5)^0], [Z(5)^0, Z(5)^3],
[Z(5)^2, Z(5)^3], [Z(5)^2, Z(5)^2],
[Z(5)^2, Z(5)], [Z(5)^2, 0*Z(5)],
[Z(5), Z(5)^3], [Z(5)^0, Z(5)^0],
[Z(5)^3, Z(5)], [Z(5)^3, 0*Z(5)],
[0*Z(5), Z(5)], [Z(5), Z(5)^0],
[Z(5)^3, Z(5)^0], [Z(5)^0, Z(5)],
[0*Z(5), Z(5)^3], [Z(5)^0, 0*Z(5)],
[Z(5)^2, Z(5)^0], [Z(5), Z(5)],
[Z(5), 0*Z(5)], [0*Z(5), Z(5)^2]]

gap> Stabilizer(G, v);
Group([[[Z(5)^0, Z(5)], [0*Z(5), Z(5)]],

[[Z(5)^2, Z(5)^0], [Z(5)^2, Z(5)^2]]])
gap> StructureDescription(last);
"C5 : C4"

We now construct a permutation representation corresponding to this action, that is,
the image of the group homomorphism induced by the action:

gap> gens := GeneratorsOfGroup(G);
[[[Z(5), 0*Z(5)], [0*Z(5), Z(5)^0]],
[[Z(5)^2, Z(5)^0], [Z(5)^2, 0*Z(5)]]]

gap> a := gens[1];;
gap> Display(a);
2 .
. 1

gap> b := gens[2];;
gap> Display(b);
4 1
4 .

gap> alpha := PermList(List([1..Size(omega)], \
> x->Position(omega, omega[x]*a)));;
gap> alpha;
(6,11,16,21)(7,12,17,22)(8,13,18,23)(9,14,19,24)(10,15,20,25)
gap> beta := PermList(List([1..Size(omega)], \
> x->Position(omega, omega[x]*b)));;
gap> beta;
(2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8,12,13)
(14,18,19)(20,24,25)
gap> StructureDescription(Group([alpha, beta]));
"GL(2,5)"

Alternatively, we can use the function Action:

gap> Action(G, GF(5)^2, OnPoints);
Group([(6,11,16,21)(7,12,17,22)(8,13,18,23)

(9,14,19,24)(10,15,20,25), (2,16,9)(3,21,15)
(4,6,17)(5,11,23)(7,22,10)(8,12,13)(14,18,19)(20,24,25)])

Example 2.35. We now consider the action of � = GL2 (5) on one-dimensional
subspaces of + = F25. We prove that the core of the action is / (�) and that the
quotient �// (�) = PGL2 (5) is isomorphic to S5:

66 2 Basic group theory

gap> G := GL(2,5);;
gap> V := GF(5)^2;;
gap> Size(Subspaces(V, 1));
6
gap> core := Filtered(G, g->ForAll(Subspaces(V, 1), x->x^g = x));
[[[Z(5)^0, 0*Z(5)], [0*Z(5), Z(5)^0]],
[[Z(5)^3, 0*Z(5)], [0*Z(5), Z(5)^3]],
[[Z(5), 0*Z(5)], [0*Z(5), Z(5)]],
[[Z(5)^2, 0*Z(5)], [0*Z(5), Z(5)^2]]]

gap> center := Center(G);;
gap> Group(core) = center;
true
gap> StructureDescription(G/center);
"S5"
gap> Size(Orbits(G, Subspaces(V, 1)));
1
gap> Transitivity(G, Subspaces(V, 1));
3
gap> W := Random(Subspaces(V, 1));;
gap> Random(W);
[Z(5)^3, Z(5)]
gap> StructureDescription(Stabilizer(G, W));
"C4 x (C5 : C4)"

We now construct the permutation representation of this action:
gap> P := Action(G, Subspaces(V, 1), OnPoints);
Group([(3,6,5,4), (1,2,5)(3,4,6)])
gap> StructureDescription(P);
"S5"
gap> NrMovedPoints(P);
6
gap> Transitivity(P, [1..6]);
3
gap> StructureDescription(Stabilizer(P, 1));
"C5 : C4"

Example 2.36. Let� = GL3 (3) act on the setΩ = {G ∈ � : |G | = 2} by conjugation.
We check that the action has a unique fixed point, namely the unique central matrix
of order two:
gap> G := GL(3,3);;
gap> omega := Filtered(G, x->Order(x) = 2);;
gap> fix := Intersection(omega, Center(G));;
gap> Size(fix);
1
gap> Display(fix[1]);
2 . .
. 2 .
. . 2

gap> # There is an alternative way to compute fixed points
gap> fix = FixedPoints(omega, G, OnPoints);
true

2.2 Group actions 67

Computing the orbits and their representatives, we conclude that there is a unique
fixed point:

gap> List(Orbits(G, omega, OnPoints), Size);
[117, 117, 1]
gap> # Orbit representatives
gap> for x in Orbits(G, omega, OnPoints) do
> Display(x[1]);
> Print("--\n");
> od;
1 1 .
. 2 .
. . 1

--
. . 1
. 2 .
1 . .

--
2 . .
. 2 .
. . 2

--
gap> x := Random(omega);;
gap> StructureDescription(Stabilizer(G, x));
"C2 x GL(2,3)"

We now construct a permutation representation of the action. In this case, we obtain
two orbits and not three, as the permutation representation overlooks fixed points.
Here is the code:

gap> P := Action(G, omega, OnPoints);;
gap> StructureDescription(P);
"PSL(3,3)"
gap> NrMovedPoints(P);
234
gap> List(Orbits(P), Size);
[117, 117]
gap> y := Random([1..NrMovedPoints(P)]);;
gap> StructureDescription(Stabilizer(P, y));
"GL(2,3)"

Example 2.37. Let � = SL2 (8). We construct the projective action of � on the set
F8 ∪ {∞} of size nine. We use OnLines, which is the function of the action of � on
the set Ω of vectors (G, H) ∈ F28 \ {(0, 0)} with the first non-zero coordinate equal to
one:

gap> G := SL(2,8);;
gap> w := [0, 1]*One(GF(8));
[0*Z(2), Z(2)^0]
gap> omega := Concatenation(List(GF(8), \
> x->[1, x]*One(GF(8))), [w]);;
gap> Size(omega);
9

68 2 Basic group theory

gap> g := Random(G);;
gap> Display(g);
z = Z(8)
z^3 z^4
z^1 z^1

gap> v := [1, 0]*One(GF(8));
[Z(2)^0, 0*Z(2)]
gap> OnLines(v, g);
[Z(2)^0, Z(2^3)]
gap> OnLines(w, g);
[Z(2)^0, Z(2)^0]

Note that OnLines and OnRight are different actions:

gap> OnLines(w, g) in omega;
true
gap> OnRight(w, g) in omega;
false

We now perform some calculations:

gap> Size(Orbits(G, omega, OnLines));
1
gap> v := Random(omega);
[Z(2)^0, Z(2^3)^4]
gap> StructureDescription(Stabilizer(G, v, OnLines));
"(C2 x C2 x C2) : C7"
gap> Transitivity(G, omega, OnLines);
3
gap> StructureDescription(Action(G, omega, OnLines));
"PSL(2,8)"

We construct an explicit permutation representation as a subgroup of S9. We need a
point at infinity, so let Σ = F8 ∪ {∞} and write F×8 = 〈Z〉 for some Z . Let & be the
group generated by the permutations of Σ given by

U(G) = G + 1, V(G) = ZG, W(G) = 1/G.

By convention, U(∞) = V(∞) = ∞, W(0) = ∞ and W(∞) = 0. Let us construct these
permutations:

gap> alpha := function(x)
> if x = infinity then
> return infinity;
> else
> return x+One(GF(8));
> fi;
> end;
function(x) ... end
gap> beta := function(x)
> if x = infinity then
> return infinity;
> else
> return x*Z(8);

2.3 Homomorphisms 69

> fi;
> end;
function(x) ... end
gap> gamma := function(x)
> if IsZero(x) then
> return infinity;
> elif x = infinity then
> return Zero(GF(8));
> else
> return 1/x;
> fi;
> end;
function(x) ... end
gap> sigma := Concatenation(AsList(GF(8)), [infinity]);;
gap> Size(sigma);
9
gap> a := PermList(List(sigma, x->Position(sigma, alpha(x))));
(1,2)(3,5)(4,8)(6,7)
gap> b := PermList(List(sigma, x->Position(sigma, beta(x))));
(2,3,4,5,6,7,8)
gap> c := PermList(List(sigma, x->Position(sigma, gamma(x))));
(1,9)(3,8)(4,7)(5,6)

After making the identifications

U ≡ (1 2) (3 5) (4 8) (6 7), V ≡ (2 3 4 5 6 7 8), W ≡ (1 9) (3 8) (4 7) (5 6),

we conclude that 〈U, V, W〉 ' PSL2 (8):
gap> Q := Group([a, b, c]);;
gap> StructureDescription(Q);
"PSL(2,8)"

One can use the function ActionHomomorphism to construct the natural homo-
morphism induced by an action:

gap> S3 := SymmetricGroup(3);;
gap> f := ActionHomomorphism(S3, [1..3], OnPoints);;
gap> Image(f) = Action(S3, [1..3], OnPoints);
true

With this function, we will be able to construct all sorts of actions. We will delve
into this in the next section.

2.3 Homomorphisms

We have several ways to construct group homomorphisms. For instance, the function
GroupHomomorphismByImages returns the group homomorphism constructed by
specifying the values of the map on a given set of generators of the domain. If these

70 2 Basic group theory

values are not consistent (in the sense that no such homomorphism can exist), then
the function will return fail.

Properties of group homomorphisms can be studied with Image, IsInjective,
IsSurjective, Kernel, PreImage, PreImages, etc.

Example 2.38. The map S4 → S3 that maps each transposition of S4 into (1 2)
extends to a group homomorphism 5 . This homomorphism 5 is not injective (ker 5
has twelve elements) and it is not surjective (for example (1 2 3) ∉ 5 (S4)):
gap> S4 := SymmetricGroup(4);;
gap> S3 := SymmetricGroup(3);;
gap> f := GroupHomomorphismByImages(S4, S3,\
> [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],\
> [(1,2),(1,2),(1,2),(1,2),(1,2),(1,2)]);
[(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)] ->
[(1,2), (1,2), (1,2), (1,2), (1,2), (1,2)]
gap> Size(Kernel(f));
12
gap> IsInjective(f);
false
gap> Size(Image(f));
2
gap> IsSurjective(f);
false
gap> (1,2,3) in Image(f);
false
gap> (1,3)^f;
(1,2)
gap> (1,2,3)^f;
()
gap> (1,2,3,4)^f;
(1,2)

If is a normal subgroup of�, the canonical map� → �/ can be constructed
with the function NaturalHomomorphismByNormalSubgroup.

Example 2.39. Let us construct the cyclic group �12 with generator 6 as a group of
permutations, the subgroup = 〈66〉 and the quotient �12/ . We also construct the
canonical (surjective) map �12 → �12/ :
gap> g := (1,2,3,4,5,6,7,8,9,10,11,12);;
gap> C12 := Group(g);;
gap> K := Subgroup(C12, [g^6]);;
gap> f := NaturalHomomorphismByNormalSubgroup(C12, K);
[(1,2,3,4,5,6,7,8,9,10,11,12)] -> [f1]
gap> Image(f, g^6);
<identity> of ...
gap> (g^6)^f = Image(f, g^6);
true

Example 2.40. With GQuotients we can determine when a given group is an epi-
morphic image of another one. For example, S3 is an epimorphic image of S4, but
�2 × �2 is not:

2.3 Homomorphisms 71

gap> S4 := SymmetricGroup(4);;
gap> GQuotients(S4, SymmetricGroup(3));
[[(2,4), (1,2,3)] -> [(2,3), (1,2,3)]]
gap> GQuotients(S4, AbelianGroup([2, 2]));
[]

Example 2.41. The group S3 is an epimorphic image of S4. In fact, if

 = {id, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3)},

then is a normal subgroup of S4 and S4/ ' S3. Let us construct the canonical
map S4 → S4/ :
gap> S4 := SymmetricGroup(4);;
gap> K := Subgroup(S4, [(1,2)(3,4), (1,3)(2,4)]);;
gap> p := NaturalHomomorphismByNormalSubgroup(S4, K);;
gap> Elements(Kernel(p));
[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)]
gap> IsSurjective(p);
true

The function AutomorphismGroup computes the automorphism group of a finite
group. If � is a group, the automorphisms of � of the form G ↦→ 6−1G6, where
6 ∈ �, are the inner automorphisms of �. The function IsInnerAutomorphism

checks whether a given automorphism is inner.

Example 2.42. Let us check that Aut(S3) is a non-abelian group of six elements:

gap> aut := AutomorphismGroup(SymmetricGroup(3));
<group of size 6 with 2 generators>
gap> IsAbelian(aut);
false

Example 2.43. Let us prove that for = ∈ {2, 3, 4, 5} each automorphism of S= is
inner. Here is the code that shows our claim:

gap> for n in [2..5] do
> G := SymmetricGroup(n);;
> if ForAll(AutomorphismGroup(G), IsInnerAutomorphism) then
> Print("Each automorphism of S", n, " is inner.\n");
> fi;
> od;
Each automorphism of S2 is inner.
Each automorphism of S3 is inner.
Each automorphism of S4 is inner.
Each automorphism of S5 is inner.

It is known that in S6 there are non-inner automorphisms:

72 2 Basic group theory

gap> S6 := SymmetricGroup(6);;
gap> f := First(AutomorphismGroup(S6),\
> x->not IsInnerAutomorphism(x));
[(1,2,3,4,5,6), (1,2)] -> [(2,3)(4,6,5), (1,2)(3,5)(4,6)]

The automorphism of S6 such that

(1 2 3 4 5 6) ↦→ (2 3) (4 6 5) and (1 2) ↦→ (1 2) (3 5) (4 6)

is not inner. Let us compute the values of this homomorphism in the transpositions:

gap> for t in ConjugacyClass(S6, (1,2)) do
> Print("f(", t, ")=", Image(f,t), "\n");
> od;
f((1,2))=(1,2)(3,5)(4,6)
f((1,3))=(1,6)(2,5)(3,4)
f((1,4))=(1,4)(2,3)(5,6)
f((1,5))=(1,5)(2,4)(3,6)
f((1,6))=(1,3)(2,6)(4,5)
f((2,3))=(1,3)(2,4)(5,6)
f((2,4))=(1,5)(2,6)(3,4)
f((2,5))=(1,6)(2,3)(4,5)
f((2,6))=(1,4)(2,5)(3,6)
f((3,4))=(1,2)(3,6)(4,5)
f((3,5))=(1,4)(2,6)(3,5)
f((3,6))=(1,5)(2,3)(4,6)
f((4,5))=(1,3)(2,5)(4,6)
f((4,6))=(1,6)(2,4)(3,5)
f((5,6))=(1,2)(3,4)(5,6)

With InnerAutomorphismsAutomorphismGroup, one constructs the inner au-
tomorphism group of a given group.

Example 2.44. Let us check that Aut(S6)/Inn(S6) ' �2:

gap> S6 := SymmetricGroup(6);;
gap> A := AutomorphismGroup(S6);;
gap> Size(A);
1440
gap> I := InnerAutomorphismsAutomorphismGroup(A);;
gap> Order(A/I);
2

The following conjecture, proposed by O. Schreier in 1926, is now a theorem
thanks to the classification of finite simple groups.

Conjecture 2.1 (Schreier). If� is a finite simple group, then the outer automorphism
group Out(�) = Aut(�)/Inn(�) is solvable.

So far, there is no known proof of the Schreier conjecture that is independent of
the classification of simple groups.

2.4 Semidirect products 73

Example 2.45 (Testing Schreier’s conjecture). We first write a function to compute
the outer automorphism group:

gap> OuterAutomorphismGroup := function(G)
> local aut;
> aut := AutomorphismGroup(G);
> return aut/InnerAutomorphismsAutomorphismGroup(aut);
> end;
function(G) ... end

We write a function that checks if the conjecture is true (recall that the conjecture is
about outer automorphisms of simple groups):

gap> Schreier := function(G)
> if not IsSimple(G) then
> return fail;
> fi;
> return IsSolvable(OuterAutomorphismGroup(G));
> end;
function(G) ... end

Now we check the conjecture in some small examples:

gap> Schreier(MathieuGroup(11));
true
gap> Schreier(MathieuGroup(12));
true
gap> Schreier(AlternatingGroup(5));
true
gap> Schreier(PSL(2,7));
true

Finally, with AllHomomorphisms, one constructs the set of all group homo-
morphisms between two given groups. Similarly, one uses AllEndomorphisms to
compute the set of endomorphisms of a group.

Example 2.46. We prove that there are ten endomorphisms of S3:

gap> S3 := SymmetricGroup(3);;
gap> Size(AllEndomorphisms(S3));
10

2.4 Semidirect products

We begin this section by using the function DirectProduct to construct direct
products of groups; we can obtain the associated canonical maps with Embedding

and Projection.

74 2 Basic group theory

Example 2.47. We construct the direct product S3 ×D8 and show that the canonical
embedding S3 → S3 ×D8, G ↦→ (G, 1), is injective but not surjective, and the natural
projection S3 × D8 → S3, (G, H) ↦→ G, is surjective but not injective:

gap> S3 := SymmetricGroup(3);;
gap> D8 := DihedralGroup(8);;
gap> S3xD8 := DirectProduct(S3, D8);;
gap> i_S3 := Embedding(S3xD8, 1);;
gap> p_S3 := Projection(S3xD8, 1);;
gap> IsInjective(i_S3);
true
gap> IsSurjective(i_S3);
false
gap> IsInjective(p_S3);
false
gap> IsSurjective(p_S3);
true

Example 2.48. Let us check that �4 × �4 and �2 ×&8 have three elements of order
two and twelve elements of order four:

gap> C4 := CyclicGroup(IsPermGroup, 4);;
gap> C2 := CyclicGroup(IsPermGroup, 2);;
gap> Q8 := QuaternionGroup(8);;
gap> C4xC4 := DirectProduct(C4, C4);;
gap> C2xQ8 := DirectProduct(C2, Q8);;
gap> Collected(List(C4xC4, Order));
[[1, 1], [2, 3], [4, 12]]
gap> Collected(List(C2xQ8, Order));
[[1, 1], [2, 3], [4, 12]]

The groups �4 × �4 and �2 × &8 are not isomorphic. An easy way to see this is to
notice that �4 × �4 is abelian and �2 ×&8 is not:

gap> IsAbelian(C4xC4);
true
gap> IsAbelian(C2xQ8);
false

Example 2.49. The center of �2 ×S3 is not stable under endomorphisms of �2 ×S3.
We see that

/ (�2 × S3) = {id, (1 2)}

and that there exists at least one endomorphism of �2 × S3 that permutes the non-
trivial element of the center:

gap> C2 := CyclicGroup(IsPermGroup, 2);;
gap> S3 := SymmetricGroup(3);;
gap> C2xS3 := DirectProduct(C2, S3);;
gap> center := Center(C2xS3);
Group([(1,2)])
gap> ForAll(AllEndomorphisms(C2xS3),\

2.4 Semidirect products 75

> f->Image(f, (1,2)) in center);
false

With DirectFactorsOfGroup we can get the decomposition of a given group as
a direct product:

gap> D12 := DihedralGroup(12);;
gap> List(DirectFactorsOfGroup(D12), StructureDescription);
["S3", "C2"]
gap> List(DirectFactorsOfGroup(GL(2,4)), StructureDescription);
["C3", "A5"]

Now we use the command SemidirectProduct(H, phi, K) to construct the
semidirect product oq �, where q : � → Aut() is a group homomorphism.

Example 2.50. Let 〈6〉 ' �2 be the cyclic group of order two. We construct the
semidirect product �7 oq �2, where q : �2 → Aut(�7), 6 ↦→ (G ↦→ G−1), and show
that �7 oq �2 ' D14:

gap> C7 := CyclicGroup(7);;
gap> C2 := CyclicGroup(2);;
gap> f := GroupHomomorphismByFunction(C7, C7, x->Inverse(x));;
gap> f in AutomorphismGroup(C7);
true
gap> Order(f);
2
gap> # Take a generator of C2
gap> g := C2.1;;
gap> phi := GroupHomomorphismByImages(C2, \
> AutomorphismGroup(C7), [g], [f]);;
gap> G := SemidirectProduct(C2, phi, C7);;
gap> StructureDescription(G);
"D14"

We construct the canonical inclusion maps �2 → �7 oq �2, �7 → �7 oq �2 and
the surjective map �7 oq �2 → �2:

gap> i_C2 := Embedding(G, 1);;
gap> StructureDescription(Image(i_C2));
"C2"
gap> i_C7 := Embedding(G, 2);;
gap> StructureDescription(Image(i_C7));
"C7"
gap> p := Projection(G);;
gap> StructureDescription(Image(p));
"C2"

Example 2.51. Let us construct all possible semidirect products (up to isomorphism)
of the form �2

4 o �2:

gap> C2 := CyclicGroup(2);;
gap> C4xC4 := AbelianGroup([4, 4]);;

76 2 Basic group theory

gap> hom := AllHomomorphisms(C2, AutomorphismGroup(C4xC4));;
gap> list := [];;
gap> for phi in hom do
> Add(list, SemidirectProduct(C2, phi, C4xC4));
> od;
gap> Set(list, IdGroup);
[[32, 11], [32, 21], [32, 24],

[32, 25], [32, 31], [32, 33],
[32, 34]]

Example 2.52. Let

& =

〈(
4 1
0 3

)
,

(
0 3
7 10

)〉
⊆ SL2 (11).

We construct the semidirect product � = F211 o& with the natural action:

gap> a := [[4, 1], [0, 3]]*One(GF(11));;
gap> b := [[0, 3], [7, 10]]*One(GF(11));;
gap> Q := Group([a, b]);;
gap> StructureDescription(Q);
"SL(2,5)"
gap> G := SemidirectProduct(Q, GF(11)^2);
<matrix group of size 14520 with 3 generators>
gap> StructureDescription(G);
"(C11 x C11) : SL(2,5)"

We now prove that � is a Frobenius group. We need, for example, to check that the
centralizers �& (:) are trivial for all : ∈ \ {1}:
gap> i_K := Embedding(G, 2);;
gap> i_Q := Embedding(G, 1);;
gap> K := Image(i_K);;
gap> ForAll(K, k->IsOne(k) or \
> IsTrivial(Centralizer(Image(i_Q), k)));
true

Example 2.53. Let us perform some calculations with the canonical homomorphism
GL2 (Z/4) → GL2 (Z/2). We first define the groups:

gap> gl4 := GL(2, Integers mod 4);;
gap> gl2 := GL(2, Integers mod 2);;
gap> Order(gl4);
96
gap> Order(gl2);
6

We check that the group GL2 (Z/4) is generated by
{(
0 1
1 0

)
,

(
1 1
0 1

)
,

(
3 0
0 1

)}
. Here is

the code that proves our claim:

gap> gens := GeneratorsOfGroup(gl4);;
gap> for x in gens do

2.4 Semidirect products 77

> Display(x);
> od;
matrix over Integers mod 4:
[[0, 1],

[1, 0]]
matrix over Integers mod 4:
[[1, 1],

[0, 1]]
matrix over Integers mod 4:
[[3, 0],

[0, 1]]

We construct the homomorphism from GL2 (Z/4) onto GL2 (Z/2) given by(
0 1
1 0

)
↦→

(
0 1
1 0

)
,

(
1 1
0 1

)
↦→

(
1 1
0 1

)
,

(
3 0
0 1

)
↦→ id .

gap> a := [[0, 1], [1, 0]]*One(gl2);;
gap> b := [[1, 1], [0, 1]]*One(gl2);;
gap> f := GroupHomomorphismByImages(gl4, gl2, gens, \
> [a, b, One(gl2)]);;
gap> IsSurjective(f);
true
gap> Size(Kernel(f));
16

A particular type of group homomorphism is given by group actions.

Example 2.54. Let us construct the action of�2 = 〈6〉 on abelian groups by inversion.
We first need to construct the function corresponding to the action:
gap> inversion := function(a, g)
> if IsOne(g) then
> return a;
> else
> return Inverse(a);
> fi;
> end;
function(a, g) ... end

Now we perform concrete calculations on the abelian group � = �2 × �4:
gap> C2 := CyclicGroup(IsPermGroup, 2);;
gap> A := AbelianGroup(IsPermGroup, [2, 4]);
Group([(1,2), (3,4,5,6)])
gap> Orbits(C2, A, inversion);
[[()], [(3,4,5,6), (3,6,5,4)], [(3,5)(4,6)], [(1,2)],

[(1,2)(3,4,5,6), (1,2)(3,6,5,4)], [(1,2)(3,5)(4,6)]]
gap> rho := ActionHomomorphism(C2, A, inversion);;
gap> Image(rho);
Group([(2,4)(6,8)])
gap> Kernel(rho);
Group(())

78 2 Basic group theory

gap> # By definition, the range is the codomain of the map
gap> Range(rho);
Sym([1 .. 8])

In this case, it is an action by group automorphisms. To construct such homomor-
phism, we could use GroupHomomorphismByFunction. However, this function does
not check that the resultingmap is a group homomorphism. For that reason, we rather
prefer to use GroupHomomorphismByImages:

gap> s := AsSet(A);;
gap> f := GroupHomomorphismByImages(A, A, s, List(s, Inverse));;
gap> IsInjective(f) and IsSurjective(f);
true

If we replace � by a non-abelian group, for example, S3, we have an action of �2

that is not an action by group automorphisms:

gap> S3 := SymmetricGroup(3);;
gap> s := AsSet(S3);;
gap> f := GroupHomomorphismByImages(S3, S3, s, List(s, Inverse));
fail

Note that the assignment (1 2 3) ↦→ (1 2 3)−1 = (1 3 2), (1 2) ↦→ (1 2)−1 = (1 2),
does extend to a unique endomorphism of S3. That is, it inverts this set of generators
of S3 but is not the inversion map G ↦→ G−1:

gap> gens := [(1,2,3), (1,2)];;
gap> f := GroupHomomorphismByImages(S3, S3, gens, \
> List(gens, Inverse));
[(1,2,3), (1,2)] -> [(1,3,2), (1,2)]
gap> for x in S3 do
> Print(x, "->", x^f, "\n");
> od;
()->()
(2,3)->(1,3)
(1,3)->(2,3)
(1,3,2)->(1,2,3)
(1,2,3)->(1,3,2)
(1,2)->(1,2)

Example 2.55. Let

W : GL= (@) → GL= (@), W(G) = (G))−1,

be the map that takes a matrix to its transpose-inverse. Clearly, W is an automorphism
ofGL= (@) such that W2 = id. Moreover, W leaves SL= (@) and the center / (GL= (@))
invariant; in particular W induces automorphisms on PSL= (@) and PGL= (@). We
implement the map W and its action on invertible matrices:

gap> gammaFunction := x->TransposedMat(Inverse(x));;
gap> gammaAction := function(x, g)
> if IsOne(g) then

2.4 Semidirect products 79

> return x;
> else
> return gammaFunction(x);
> fi;
> end;
function(x, g) ... end

We consider the action of the cyclic group 〈W〉 of order 2 on � = GL3 (3):
gap> G := GL(3,3);;
gap> Size(G);
11232
gap> s := AsSet(G);;
gap> gamma := GroupHomomorphismByFunction(G, G, gammaFunction);;
gap> Order(gamma);
2
gap> gamma in AutomorphismGroup(G);
true

We now compute the set {G ∈ � : GW = G} of fixed points. Then we quickly obtain
the number of orbits:
gap> fix := Group(Filtered(s, x->x^gamma = x));;
gap> StructureDescription(fix);
"C2 x S4"
gap> # This is Burnside’s lemma
gap> (Size(G) + Size(fix))/2;
5640

Indeed, the subgroup of fixed points is the group of orthogonal matrices over the
field of three elements:
gap> IsomorphismGroups(GO(3,3), fix) <> fail;
true

Since W acts on� by group automorphisms, we now construct the semidirect prod-
uct (= � o 〈W〉; we use DisplayCompositionSeries to display the composition
factors:
gap> C2 := Subgroup(AutomorphismGroup(G), [gamma]);;
gap> S := SemidirectProduct(C2, G);;
gap> Order(S);
22464
gap> DisplayCompositionSeries(S);
G (3 gens, size 22464)
| C2

S (5 gens, size 11232)
| L3(3)

S (1 gens, size 2)
| C2

1 (0 gens, size 1)

Note that DisplayCompositionSeries prints G for our semidirect product (of
size 22464) and S for the intermediate subgroups.

We now verify that the set of fixed points is equal to the centralizer �� (W):

80 2 Basic group theory

gap> i_C2 := Embedding(S, 1);;
gap> i_G := Embedding(S, 2);;
gap> C := Centralizer(Image(i_G), Image(i_C2));;
gap> Image(i_G, fix) = C;
true
gap> StructureDescription(C);
"C2 x S4"

Example 2.56. We continue with Example 2.55. Let (= GL3 (3) o 〈W〉 be the
semidirect product of the linear group GL3 (3) by the transpose-inverse map W.
We construct the quotient & = (// (GL3 (3)):
gap> Q := S/Center(Image(i_G));;
gap> StructureDescription(Q);
"PSL(3,3) : C2"

Note thatGL3 (3) and & have the same composition factors but they are not isomor-
phic since, for example, & has trivial center and / (GL3 (3)) = �2:

gap> DisplayCompositionSeries(Q);
G (3 gens, size 11232)
| C2

S (12 gens, size 5616)
| L3(3)

1 (0 gens, size 1)
gap> DisplayCompositionSeries(GL(3,3));
G (size 11232)
| L3(3)

S (1 gens, size 2)
| C2

1 (size 1)
gap> IsTrivial(Center(Q));
true
gap> StructureDescription(Center(GL(3,3)));
"C2"

Example 2.57. We now repeat what we did in Examples 2.55 and 2.56 with the group
� = GL2 (7):
gap> G := GL(2,7);;
gap> s := AsSet(G);;
gap> gamma := GroupHomomorphismByFunction(G, G, gammaFunction);;
gap> C2 := Subgroup(AutomorphismGroup(G), [gamma]);;
gap> Size(Orbits(C2, G, gammaAction));
1016
gap> S := SemidirectProduct(C2, G);;
gap> StructureDescription(S);
"GL(2,7) : C2

We check the structure of the centralizer �� (W):

2.4 Semidirect products 81

gap> i_C2 := Embedding(S, 1);;
gap> i_G := Embedding(S, 2);;
gap> C := Centralizer(Image(i_G), Image(i_C2));
<permutation group with 2 generators>
gap> StructureDescription(C);
"D16"

In this case, (// (�) ' PGL2 (7) o�2 is indeed isomorphic to PGL2 (7) ×�2 since
the induced action of W on PGL2 (7) is inner:

W

(
0 1

2 3

)
=

1

03 − 12

(
3 −2
−1 0

)
=

1

03 − 12

(
0 −1
1 0

) (
0 1

2 3

) (
0 1
−1 0

)
.

Here is the code:

gap> N := Center(Image(i_G));;
gap> Q := S/N;;
gap> DirectFactorsOfGroup(Q);
[PSL(3,2) : C2, C2]
gap> not IsomorphismGroups(Q, DirectProduct(PGL(2,7),C2)) = fail;
true
gap> not IsomorphismGroups(Q/Center(Q), PGL(2,7)) = fail;
true

Example 2.58. Let us see how the alternating groupA5 acts on a coset space by right
multiplication. First, we compute the list of conjugacy classes of subgroups of A5.
There are nine conjugacy classes of subgroups:

gap> A5 := AlternatingGroup(5);;
gap> classes := ConjugacyClassesSubgroups(A5);;
gap> Size(classes);
9

For example, the fourth element in our list is the conjugacy class of subgroups with
representative 〈(2 3) (4 5), (2 4) (3 5)〉. The conjugacy class has five subgroups:

gap> class := classes[4];
Group([(2,3)(4,5), (2,4)(3,5)])^G
gap> Size(class);
5
gap> for x in class do
> Display(x);
> od;
Group([(2,3)(4,5), (2,4)(3,5)])
Group([(1,2)(4,5), (1,4)(2,5)])
Group([(1,2)(3,4), (1,3)(2,4)])
Group([(1,5)(2,3), (1,3)(2,5)])
Group([(1,5)(3,4), (1,4)(3,5)])

We can obtain some information on representatives of conjugacy classes of sub-
groups of A5:

82 2 Basic group theory

gap> List(classes, x->Order(Representative(x)));
[1, 2, 3, 4, 5, 6, 10, 12, 60]
gap> List(classes, x->Index(A5, Representative(x)));
[60, 30, 20, 15, 12, 10, 6, 5, 1]
gap> List(classes, x->StructureDescription(Representative(x)));
["1", "C2", "C3", "C2 x C2", "C5", "S3", "D10", "A4", "A5"]

Let � be the subgroup of A5 isomorphic to the cyclic group �5 of order five. We
now construct the action of A5 on the set A5/� by right multiplication:

gap> H := Representative(classes[5]);;
gap> Elements(H);
[(), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2)]
gap> f := ActionHomomorphism(A5, RightCosets(A5, H), OnRight);;
gap> Kernel(f);
1
gap> IsInjective(f);
true
gap> IsSurjective(f);
false

2.5 Solvable groups

We now describe some algorithms and concepts related to solvable groups.
We know that AllSubgroups returns the list of all subgroups of a given group,

but it is intended primarily for small examples, and may become inefficient for
larger groups. In general, it is better to use ConjugacyClassesSubgroups. In the
case of solvable groups, there are better algorithms to compute conjugacy classes of
subgroups. The function SubgroupsSolvableGroup returns a list of representatives
of subgroups up to conjugation.

Example 2.59. Let % be the Sylow 2-subgroup of the Mathieu group M24. We want
to compute the conjugacy classes of subgroups of % of order 25. We can proceed as
follows:

gap> P := SylowSubgroup(MathieuGroup(24), 2);;
gap> Number(ConjugacyClassesSubgroups(P), \
> x->Order(Representative(x)) = 2^5);
1403

Thus there are 1403 conjugacy classes of subgroups of order 25.
Since % is solvable, we can try something different. If we use the function

SubgroupsSolvableGroup in combination with ExactSizeConsiderFunction

the calculation is about much faster (the reader should compare the different meth-
ods):

gap> Size(SubgroupsSolvableGroup(P, \

2.5 Solvable groups 83

> rec(consider := ExactSizeConsiderFunction(2^5))));
1728

The numbers are different! This happens because SubgroupsSolvableGroup re-
turned a list of subgroups of % that includes all subgroups of order 25 and (maybe)
other subgroups of %. To obtain the right number of subgroups we need to remove
the unwanted subgroups (this is super fast, no extra time is needed):

gap> Number(SubgroupsSolvableGroup(P, rec(consider := \
> ExactSizeConsiderFunction(2^5))) ,x->Order(x) = 2^5);
1403

This does not mean that it is always more convenient to use this function when
dealing with solvable groups. For example, if we want to compute the list of nor-
mal subgroups, NormalSubgroups is much faster than SubgroupsSolvableGroup
(again, the reader should compare the run-times of these methods):

gap> Size(NormalSubgroups(P));
157
gap> Number(SubgroupsSolvableGroup(P, \
> rec(normal := true)), x->IsNormal(P, x));
157

Note that, again, SubgroupsSolvableGroup produced a list of subgroups that in-
cludes all normal subgroups of % and (maybe) some other non-normal subgroups of
%. This means that an extra filter is needed.

Hall’s theorem states that if � is a finite solvable group of order 01 with
gcd(0, 1) = 1, then there exists a unique (non-empty) conjugacy class of subgroups
of � order 0. Such subgroups of order 0 are called Hall c-subgroups of �, where c
is the set of prime divisors of 0.

Example 2.60. Wenow perform some calculations with the function HallSubgroup:

gap> D60 := DihedralGroup(IsPermGroup, 60);;
gap> IsSolvable(D60);
true
gap> StructureDescription(HallSubgroup(D60, [2, 3]));
"D12"
gap> StructureDescription(HallSubgroup(D60, [2, 5]));
"D20"
gap> StructureDescription(HallSubgroup(D60, [3, 5]));
"C15"

Now we show that the alternating group A5, a simple group of order 60, does not
contain Hall subgroups of order 15 and 20:

gap> A5 := AlternatingGroup(5);;
gap> HallSubgroup(A5, [3, 5]);
fail
gap> HallSubgroup(A5, [2, 5]);
fail

84 2 Basic group theory

Hall {2, 3}-subgroups of the simple groupPSL2 (7) of order 168 are not conjugate
(but isomorphic):
gap> G := PSL(2,7);;
gap> hall := HallSubgroup(G, [2, 3]);;
gap> Size(hall);
2
gap> IsConjugate(G, hall[1], hall[2]);
false
gap> not IsomorphismGroups(hall[1], hall[2]) = fail;
true

We finally show that Hall {2, 3}-subgroups of the simple group PSL2 (11) of
order 660 are not isomorphic (and hence not conjugate):
gap> G := PSL(2,11);;
gap> Order(PSL(2,11));
660
gap> hall := HallSubgroup(G, [2, 3]);;
gap> Size(hall);
2
gap> List(hall, StructureDescription);
["D12", "A4"]
gap> IsomorphismGroups(hall[1], hall[2]);
fail

Example 2.61. Schottenfels’ theorem [48, Theorem 8.24] states that PSL3 (4) and
A8 are simple groups of the same order, but they are not isomorphic:
gap> G := PSL(3,4);;
gap> Order(G);
20160
gap> A8 := AlternatingGroup(8);;
gap> Order(A8);
20160
gap> IsomorphismGroups(G, A8);
fail

The fact that these groups are not isomorphic also follows from the structure of
Hall’s subgroups:
gap> HallSubgroup(G, [2, 3]);
fail
gap> StructureDescription(HallSubgroup(A8, [2, 3]));
"(C2 x C2 x C2 x C2) : (S3 x S3)"

2.6 Finitely presented groups

Let us start working with free groups. The function FreeGroup constructs the free
group in a finite number of generators.

2.6 Finitely presented groups 85

Example 2.62. We create the free group �2 in two generators and we create some
random elements with the function Random:

gap> f := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> f.1^2;
f1^2
gap> f.1^2*f.1;
f1^3
gap> f.1*f.1^(-1);
<identity ...>
gap> Random(f);
f1^-3

Example 2.63. The function Length can be used to compute the length of a word in
a free group. In this example, we create 10000 random elements in �2 and compute
their lengths.

gap> f := FreeGroup(2);;
gap> Collected(List(List([1..10000], x->Random(f)), Length));
[[0, 2270], [1, 1044], [2, 1113],

[3, 986], [4, 874], [5, 737],
[6, 642], [7, 500], [8, 432],
[9, 329], [10, 248], [11, 189],
[12, 152], [13, 119], [14, 93],
[15, 68], [16, 57], [17, 34],
[18, 30], [19, 23], [20, 19],
[21, 16], [22, 8], [23, 3], [24, 4],
[25, 4], [26, 2], [27, 2], [28, 1],
[31, 1]]

Some of the functions we have used before can also be used in free groups. Exam-
ples of these functions are Normalizer, RepresentativeAction, IsConjugate,
Intersection, IsSubgroup, Subgroup.

Example 2.64. Here we perform some elementary calculations in �2, the free group
with generators 0 and 1. We also compute the automorphism group of �2.

gap> f := FreeGroup("a", "b");;

We now need to assign the generators to variables. We could do, for example, the
following sequence of commands:

gap> a := GeneratorsOfGroup(f)[1];;
gap> b := GeneratorsOfGroup(f)[2];;

However, there is an easier way to do this:

gap> AssignGeneratorVariables(f);
#I Assigned the global variables [a, b]

Now we perform some calculations in the free group:

86 2 Basic group theory

gap> Random(f);
b^-1*a^-5
gap> Centralizer(f, a);
Group([a])
gap> Index(f, Centralizer(f, a));
infinity
gap> Subgroup(f, [a, b]);
Group([a, b])
gap> Order(Subgroup(f, [a, b]));
infinity
gap> AutomorphismGroup(f);
<group of size infinity with 3 generators>
gap> GeneratorsOfGroup(AutomorphismGroup(f));
[[a, b] -> [a^-1, b],

[a, b] -> [b, a],
[a, b] -> [a*b, b]]

We now check that the subgroup (generated by 02, 1 and 010−1 has index two in
�2. We compute Aut(() and check that this is not a free group:

gap> S := Subgroup(f, [a^2, b, a*b*a^(-1)]);
Group([a^2, b, a*b*a^-1])
gap> Index(f, S);
2
gap> A := AutomorphismGroup(S);
<group of size infinity with 3 generators>
gap> IsFreeGroup(A);
false

Example 2.65. Let = ≥ 3 and ? ≥ 2 be integers. An astonishing result of Coxeter [12]
states that the group with generators f1, . . . , f=−1 and relations

f8f8+1f8 = f8+1f8f8+1 if 8 ∈ {1, . . . , = − 2},
f8f9 = f9f8 if |8 − 9 | ≥ 2,

f
?

8
= 1 if 8 ∈ {1, . . . , = − 1}〉,

is finite if and only if (? − 2) (= − 2) < 4.
We study the case = = 3. Let

� = 〈0, 1 | 010 = 101, 0? = 1? = 1〉.

We claim that

� '

S3 if ? = 2,

SL2 (3) if ? = 3,

SL2 (3) o �4 if ? = 4,

SL2 (3) × �5 if ? = 5.

We use the function ParseRelators to translate the list of relations (in a human-
readable form) into relators. Here is the proof of the above claim:

2.6 Finitely presented groups 87

gap> f := FreeGroup("a", "b");;
gap> AssignGeneratorVariables(f);
#I Assigned the global variables [a, b]
gap> p := 2;;
gap> while p-2 < 4 do
> G := f/ParseRelators(f, "a*b*a=b*a*b, a^p=1, b^p=1");
> Display(StructureDescription(G));
> p := p+1;
> od;
S3
SL(2,3)
SL(2,3) : C4
C5 x SL(2,5)

Example 2.66. For positive integers ;, <, =, we define the von Dyck group (or trian-
gular group) of type (;, <, =) as the group

� (;, <, =) = 〈0, 1 | 0; = 1< = (01)= = 1〉.

It is known that � (;, <, =) is finite if and only if

1

;
+ 1

<
+ 1

=
> 1.

We claim that

� (2, 3, 3) ' A4, � (2, 3, 4) ' S4, � (2, 3, 5) ' A5.

We construct these groups using relators, and not the function ParseRelators as
we did in the previous example:
gap> f := FreeGroup("a", "b");;
gap> AssignGeneratorVariables(f);;
#I Assigned the global variables [a, b]
gap> StructureDescription(f/[a^2, b^3, (a*b)^3]);
"A4"
gap> StructureDescription(f/[a^2, b^3, (a*b)^4]);
"S4"
gap> StructureDescription(f/[a^2, b^3, (a*b)^5]);
"A5"

Example 2.67. This example is taken from [14]. Let us check that the group

〈0, 1, 2 | 03 = 13 = 24 = 1, 02 = 20−1, 010−1 = 121−1〉

is trivial. For that purpose, we use IsTrivial:
gap> f := FreeGroup("a", "b", "c");;
gap> AssignGeneratorVariables(f);;
#I Assigned the global variables [a, b, c]

88 2 Basic group theory

gap> G := f/[a^3, b^3, c^4, c^(-1)*a*c*a,
> a*b*a^(-1)*b*c^(-1)*b^(-1)];;
gap> IsTrivial(G);
true

Example 2.68. In [39] it is proved that for a positive integer =,

〈0, 1 | 0−11=0 = 1=+1, 0 = 0811 910821 92 · · · 08: 1 9: 〉,

is trivial if 81 + 82 + · · · 8: = 0. As an example, we show that

〈0, 1 | 0−1120 = 13, 0 = 0−110〉

is the trivial group:

gap> f := FreeGroup("a", "b");;
gap> AssignGeneratorVariables(f);;
#I Assigned the global variables [a, b]
gap> G := f/[a^(-1)*b^2*a*b^(-3), a^(-1)*(a^(-1)*b*a)];;
gap> IsTrivial(G);
true

Remark 2.2. The word problem asks for an algorithm that decides whether two given
expressions are equivalent with respect to a set of rewriting identities. In 1955,
P. Novikov proved that there exists a finitely presented group such that the word
problem for this group is undecidable (see [44]). There are families of groups with
a solvable word problem (e.g., finite groups, free (abelian) groups, (bi)automatic
groups, Garside groups, hyperbolic groups); see for example [51].

For each = ≥ 2, the Burnside group �(2, =) is defined as the group

�(2, =) = 〈0, 1 | F= = 1 for all word F in the letters 0 and 1〉.

Burnside’s problem can be stated as follows: For which positive integer = is the free
Burnside group �(2, =) finite? Clearly, �(2, 2) ' �2 × �2. Moreover, the following
additional results are known: the groups �(2, 3), �(2, 4), and �(2, 6) are finite. The
cases �(2, 5), �(2, 7) and �(2, 8) remain open. We refer [9, Chapter 6] for more
information.

Example 2.69. We prove that the group �(2, 3) is a finite group of order 27. Let
� be the free group of rank two. Here we do not need to assign variables to the
generators. We divide � by the normal subgroup generated by {F3

1, . . . , F
3
10000},

where F1, . . . , F10000 are some randomly chosen words of �. The following code
shows that �(2, 3) is finite:
gap> f := FreeGroup(2);;
gap> rels := Set([1..10000], x->Random(f)^3);;
gap> B23 := f/rels;;

2.6 Finitely presented groups 89

gap> Order(B23);
27
gap> Number(B23, x->IsOne(x^3));
27

Note that our group B23 is exactly the group �(2, 3), as every non-trivial element
has order three. The group �(2, 3) is isomorphic to the Heisenberg group

�3 =

©«
1 0 1
0 1 2
0 0 1

ª®¬ : 0, 1, 2 ∈ F3
 =

〈©«
1 1 0
0 1 0
0 0 1

ª®¬ , ©«
1 0 0
0 1 1
0 0 1

ª®¬
〉
.

Here is the code:
gap> a := [[1,1,0],[0,1,0],[0,0,1]]*One(GF(3));;
gap> b := [[1,0,0],[0,1,1],[0,0,1]]*One(GF(3));;
gap> Display(a);
1 1 .
. 1 .
. . 1

gap> Display(b);
1 . .
. 1 1
. . 1

gap> H3 := Group([a, b]);;
gap> Order(H3);
27
gap> not IsomorphismGroups(B23, H3) = fail;
true

Example 2.70. It is known that �(2, 4) is a finite group of order 4096. Here we
present a computational proof. We use the same trick as before:
gap> f := FreeGroup(2);;
gap> rels := Set([1..10000], x->Random(f)^4);;
gap> B24 := f/rels;;
gap> Order(B24);
4096
gap> Number(B24, x->IsOne(x^4));
4096

We conclude this chapter with examples of finitely presented groups that satisfy
certain finiteness conditions.We will combine computer computations with different
theorems to recover the structure of the center, the commutator subgroup, and the
respective quotients.

Example 2.71. We will study the structure of the following finitely presented group:

� = 〈0, 1, 2 | 01 = 20, 02 = 10, 12 = 01〉.

We first construct � and check that it is not abelian. We will do this using the
functions AssignGeneratorVariables and ParseRelators:

90 2 Basic group theory

gap> f := FreeGroup("x", "y", "z");;
gap> AssignGeneratorVariables(f);;
#I Assigned the global variables [x, y, z]
gap> G := f/ParseRelators(f, "xy=zx, xz=yx, yz=xy");
<fp group on the generators [x, y, z]>
gap> a := G.1;;
gap> b := G.2;;
gap> c := G.3;;
gap> IsAbelian(G);
false

We note that � is infinite, as �/[�,�] ' Z:
gap> Order(G);
infinity
gap> AbelianInvariants(G/DerivedSubgroup(G));
[0]
gap> StructureDescription(G/DerivedSubgroup(G));
"Z"

Note that 02 = 12 = 22 and / (�) = 〈12〉 ' Z is a finite-index subgroup. In fact,
�// (�) ' S3:
gap> a^2 = b^2 and b^2 = c^2;
true
gap> Center(G);
Group([b^2])
gap> Order(Center(G));
infinity
gap> Index(G,Center(G));
6
gap> StructureDescription(G/Center(G));
"S3"

Note that the group homomorphism � → S3,

0 ↦→ (1 2), 1 ↦→ (1 3), 2 ↦→ (2 3),

has kernel / (�). Since / (�) has finite-index in �, it follows that every conjugacy
class of � is finite. For example:

gap> Size(ConjugacyClass(G, a));
3
gap> Size(ConjugacyClass(G, a*b));
2
gap> Size(ConjugacyClass(G, a*b*a^5));
3

Let ? : � → �2 be the group homomorphism that sends the generators 0, 1 and 2
to the permutation (1 2), i.e.,

0 ↦→ (1 2), 1 ↦→ (1 2), 2 ↦→ (1 2).

2.6 Finitely presented groups 91

Then ker ? ' Z × �3:

gap> C2 := Group([(1,2)]);;
gap> p := GroupHomomorphismByImages(G, C2, [a, b, c],\
> [(1,2), (1,2), (1,2)]);;
gap> IsInjective(p);
false
gap> IsSurjective(p);
true
gap> K := Kernel(p);;
gap> IsAbelian(K);
true
gap> AbelianInvariants(K);
[0, 3]

We claim that [�,�] ' �3. On the one hand, since � is non-abelian, [�,�] is
non-trivial. Moreover, by a theorem of Schur [27, Theorem 5.7], [�,�] is finite,
as / (�) has finite-index in �. On the other hand, since �/ker ? ' �2 is abelian,
[�,�] ⊆ ker ?. The group ker ? ' Z × �3 contains a unique non-trivial torsion
subgroup. Hence [�,�] ' �3.

Example 2.72. Let

� = 〈0, 1, 2, 3 | 01 = 3, 02 = 1, 03 = 2, 10 = 2〉.

We show that 〈03〉 is a central subgroup of � and that �/〈03〉 ' SL2 (3):
gap> f := FreeGroup("x", "y", "z", "w");;
gap> AssignGeneratorVariables(f);
#I Assigned the global variables [x, y, z, w]
gap> G := f/ParseRelators(f, "x^y=w, x^z=y, x^w=z, y^x=z");;
gap> StructureDescription(G/Center(G));
"A4"
gap> a := GeneratorsOfGroup(G)[1];
gap> b := GeneratorsOfGroup(G)[2];
gap> c := GeneratorsOfGroup(G)[3];
gap> d := GeneratorsOfGroup(G)[4];
gap> a^3 = b^3 and b^3 = c^3 and c^3 = d^3;
true
gap> a^3 in Center(G);
true
gap> N := Subgroup(G, [a^3]);;
gap> StructureDescription(G/N);
"SL(2,3)"
gap> Size(ConjugacyClass(G, a));
4

This example is a particular case of a theorem of Dietzmann [27, Theorem 5.10].
This theorem states that if � is a group and - is a normal subset of � such that
every element of - has finite order, then the subgroup generated by - is finite.

92 2 Basic group theory

2.7 Problems

2.1. Compute the order of the subgroup of GL2 (Z) generated by(
1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
.

Can you recognize this group?

2.2. Construct the Heisenberg group

�5 =

©«
1 0 1
0 1 2
0 0 1

ª®¬ : 0, 1, 2 ∈ F5

as a permutation group.

2.3. Prove that all subgroups of �4 ×&8 are normal.

2.4. Let � be the set of matrices of the form
(
1 1
0 3

)
, where 1 ∈ F4 and 3 ∈ F4 \ {0}.

Prove that � is a group and compute its order.

2.5. Find all groups of order 12 that are non-trivial semidirect products.

2.6. Use the function IsomorphicSubgroups to prove that A6 does not contain a
subgroup isomorphic to S5 and that A7 contains a subgroup isomorphic to S5.

2.7. Prove that A6 does not contain subgroups of prime-index.

2.8. Prove that SL2 (3) has a unique normal subgroup of order eight.

2.9. Find a subgroup of SL2 (5) isomorphic to SL2 (3).

2.10. Use the functions SylowSubgroup and ConjugacyClassSubgroups to con-
struct all Sylow subgroups of A4 and S4.

2.11. Prove that S5 has a Sylow 2-subgroup isomorphic to the dihedral group of
eight elements.

2.12. Can you recognize the structure of Sylow 2-subgroups of S6?

2.13. Use the function Normalizer to compute the number of conjugates of Sylow
2-subgroups of A5.

2.14. Find all Sylow subgroups of �27, SL2 (5), S7, S3 × A4 and S3 × �20.

2.15. Let ? ∈ {2, 3}. Compute the conjugacy classes of subgroups of S3 × S3 and
find (if possible) three Sylow ?-subgroups, say �, �, �, such that � ∩ � = {1} and
� ∩ � ≠ {1}.

2.7 Problems 93

2.16. Prove that the group {(
1 1
0 3

)
: 1, 3 ∈ F19, 3 ≠ 0

}
is not simple.

2.17. Let � be the group generated by the permutations (1 2) (6 11) (8 12) (9 13),
(5 13 9) (6 10 11) (7 8 12) and (2 4 3) (5 8 9) (6 10 13) (7 11 12). How many elements
of � are commutators?

2.18. Prove that A4 × �7 does not contain subgroups of index two.

2.19. Prove that A5 does not contain subgroups of order 8, 15, 20, 24, 30, 40.

2.20. It is known that an abelian subgroup of S= has order ≤ 3 b=/3c . How good is
this bound? For = ∈ {5, 6, 7, 8} find (if possible) an abelian subgroup of S= of order
3 b=/3c .

2.21. Prove that SL2 (5) does not contain subgroups isomorphic to A5, but contains
a proper quotient isomorphic to A5.

2.22. Prove that for each positive divisor 3 of 24, there exists a subgroup of S4 of
order 3.

2.23. Let � = SL2 (13). Prove the following statements:

(a) � contains a unique element of order two.
(b) � does not have subgroups of order 42.
(c) PSL2 (13) is the only non-abelian simple quotient of �.

2.24. Can you recognize the group SL3 (2)// (SL3 (2))?

2.25. A covering of a group � is a group � such that � = �// for some subgroup
/ ≤ / (�) ∩ � ′.

(a) For each I ∈ {1, 2, 3}, prove that there exists a covering group� ofA6 such that
|� |/|A6 | = I.

(b) Can you construct a covering group � such that |� |/|A6 | = 6?

Hint: There is a largest perfect group � with / (�) = �6 and �// (�) ' A6; the
remaining groups are just quotients of �.

2.26. Compute all the finite groups of order ≤ 240 that have A5 as a composition
factor.

2.27. Let 〈A, B | A8 = B2 = 1, BAB = A−1〉 be the dihedral group of sixteen elements.
Find all subgroups containing A2.

2.28. Find all the group homomorphisms S3 → SL2 (3).

94 2 Basic group theory

2.29. Are there any surjective homomorphismsD16 → D8?What aboutD16 → �2?

2.30. Prove that Aut(A4) ' S4.

2.31. Prove that Aut(D8) ' D8 and that Aut(D16) ; D16.

2.32. Compute the order of the group Aut(�11 × �2 × �3).

2.33. Prove that D12 ' S3 × �2.

2.34. Let � be a group of order 12 such that � ; A4. Prove that � contains an
element of order six.

2.35. Compute the list of normal subgroups of GL2 (3).

2.36. Compute the list of minimal subgroups of PGL2 (7).

2.37. Recall that a field automorphism for ! = PSL= (?0) is an automorphism of
! which is Aut(!)-conjugate to the automorphism induced by some power of the
Frobenius map G ↦→ G? . Compute the list of subgroups ofAut(PSL2 (9)) containing
a field automorphism of order two and PSL2 (9).

2.38. Use the function CharacteristicSubgroups to compute all characteristic
subgroups of GL3 (7). Can you describe these subgroups?

2.39. Compute the socle and the list of minimal normal subgroups of GL2 (9).

2.40. Compute the Fitting and the Frattini subgroup of SL2 (3).

2.41. Compute the list of all maximal normal subgroups of SL2 (5).

2.42. Find all characteristic subgroups of the Heisenberg group �5.

2.43. Prove that PSL2 (7) has a maximal subgroup of order 16.

2.44. Given a set of prime numbers c and a group �, we say that � is c-separable
if there exists a chain of subgroups

{1} = #0 ⊆ #1 ⊆ . . . ⊆ #B = �,

where each #8 is normal in #8+1 and each #8+1/#8 is either a c-group or a c′-group.
Write a function that detects c-separable groups.

2.45. Let � be a finite group and � be a subgroup. The Chermak–Delgadomeasure
of � is the number <� (�) = |� | |�� (�) |.

(a) Write a function to compute the Chermak–Delgado measure.
(b) Compute <� (�) for � ∈ {S3,D8} and � a subgroup of �.

2.46. Recall that the holomorph of a group� is the semidirect product� oAut(�).

(a) Write a function that returns the holomorph of given a group �.

2.7 Problems 95

(b) Compute the holomorph of A4.
(c) Find a permutation representation of small degree of the holomorph of A4 and

find a minimal normal subgroup of order four.

This is an exercise of [40].

2.47. Let � be a finite group and P be the set of subsets of � containing the identity
of � and

5 : P → P, (↦→ {GH−1 : G, H ∈ (}.

(a) Write a function for the map 5 .
(b) Write a function that, given an element (∈ P, returns the smallest non-negative

integer = such that 5 = (() = 5 =+1 ((). Which subsets have = = 0?
(c) Write a function that computes

`(�) = min{= ≥ 0 : 5 = (() = 5 =+1 (() for all (∈ P}.

(d) Compute `(S3), `(D8) and `(A4).

2.48. Prove that the group

〈(1 2 3 · · · 7), (2 6) (3 4)〉

is simple, has order 168 and acts transitively on {1, . . . , 7}. Can you recognize this
group?

2.49. Compute the order of the group 〈0, 1 | 02 = 12 = (101−1)3 = 1〉.

2.50. Prove that 〈0, 1 | 02 = 010−11 = 1〉 is an infinite group.

2.51. Compute the order of the group 〈0, 1 | 08 = 1204 = 01−101 = 1〉.

2.52. Can you recognize the group 〈0, 1 | 05 = 1, 12 = (01)3, (031041)2 = 1〉?

2.53. Prove that the group 〈0, 1 | 02 = 13 = 0−11−101 = 1〉 is finite and cyclic.

2.54. Prove that the group 〈0, 1 | 02 = 13 = 1〉 is non-abelian.

2.55. Compute the order of the group

〈0, 1, 2 | 03 = 13 = 23 = 1, 010 = 101, 212 = 121, 02 = 20〉.

2.56. Prove that the group 〈0, 1, 2 | 101−1 = 02, 212−1 = 1, 020−1 = 22〉 is trivial.
This is an exercise of Serre’s book [50, §1].

2.57. Find a permutation representation of the group �(2, 3).

2.58. Prove that �(3, 3) = 〈0, 1, 2 | F3 = 1 for all words F in 0, 1, 2〉 is a finite
group. Can you compute the order of �(3, 3)?

96 2 Basic group theory

2.59. Let� be a finite groupwith : conjugacy classes. It is known that the probability
that two elements of � commute is equal to prob(�) = :/|� |. Compute this
probability for SL2 (3), A4, A5, S4 and &8.

2.60. Use the function SubnormalSeries to find a subnormal series for the subgroup

of SL2 (3) generated by
(
1 1
1 2

)
.

2.61. Use DerivedSeriesOfGroup to compute the derived series of SL2 (3). Can
you compute the length of the derived series?

Chapter 3
Advanced group theory

Throughout this chapter, we work with more particular problems in group theory
and use GAP to perform computations and verify certain conditions. We begin with
a brief introduction to the group databases contained in the system, with particular
emphasis on the SmallGroup library. Then we revisit group representations and
character theory and take a closer look at the packages repsn, AtlasRep, and
CTblLib. Since the latter already contains the character tables of many finite groups
(for example, the sporadic simple groups), we use this information to significantly
improve the performance of our calculations. Next, we employ these databases to
analyze and test selected conjectures on group theory, some of them still open. For
example, we investigate the celebrated McKay conjecture, Thompson’s conjecture
on products of conjugacy classes, and a conjecture raised by Harada in 2018 for
which little is known We also review Ore’s conjecture and Szep’s conjecture, which
were proved using the classification of finite simple groups.

By the end of the chapter, we give a brief introduction to group rings and provide
examples including the computation of the Wedderburn decompositions with the
package Wedderga. Then we finish by working with the Promislow group, which is
an infinite group defined by generators and relations, study a matrix representation
proposed in Passman’s book, and present a script that checks Gardam’s proof of the
counterexample of the Kaplansky unit conjecture (namely, there are non-trivial units
in the group ring of the Promislow group over the field of two elements).

3.1 Group databases

GAP contains several useful group databases. The groups are sorted by their orders
and listed up to isomorphism. This database is part of a library named SmallGroups.
It contains the following families of groups:
(a) Of order ≤ 2000 except order 1024.
(b) Of cube-free order ≤ 50000.
(c) Of order ?7 for ? ∈ {3, 5, 7, 11}.

97

98 3 Advanced group theory

(d) Of order ?= for = ≤ 6 and all primes ?.
(e) Of order @=? for @= dividing 28, 36, 55 or 74 and all primes ? with ? ≠ @.
(f) Of square-free order.
(g) Of order that factorizes into at most three primes.

The library was written by H. Besche, B. Eick, and E. O’Brien.
As one can imagine, this library is a handy tool when one needs to look for

examples and counterexamples.

Example 3.1. Let us see what SmallGroups knows about groups of order twelve:

gap> SmallGroupsInformation(12);

There are 5 groups of order 12.
1 is of type 6.2.
2 is of type c12.
3 is of type A4.
4 is of type D12.
5 is of type 2^2x3.

The groups whose order factorises in at most 3 primes
have been classified by O. Hoelder. This classification is
used in the SmallGroups library.

This size belongs to layer 1 of the SmallGroups library.
IdSmallGroup is available for this size.

Some of the examples of this section were extracted from [35].

Example 3.2. Let us check that there exist non-abelian groups of odd order and that
the smallest one has order 21:

gap> First(AllSmallGroups(Size, [1, 3..21]),\
> x->not IsAbelian(x));;
gap> Size(last);
21

Example 3.3. In one line, we can check that there are no simple groups of order 84.
We use the filter IsSimple with the function AllSmallGroups:

gap> AllSmallGroups(Size, 84, IsSimple, true);
[]

With the function StructureDescription, one explores the structure of a given
group. The function returns a short string, giving insight into the group’s structure.

Example 3.4. Let us see what the groups of order twelve look like:

gap> List(AllSmallGroups(Size, 12), StructureDescription);
["C3 : C4", "C12", "A4", "D12", "C6 x C2"]

3.1 Group databases 99

The group C3 : C4 denotes a semidirect product �3 o �4 of �3 by �4.

Example 3.5. Let us explore more group homomorphisms. We know that the sym-
metric group S4 is generated by the transpositions (1 2), (2 3) and (3 4). We let 5
be the group homomorphism S4 → S3 given by (1 2) ↦→ (1 2), (2 3) ↦→ (2 3) and
(3 4) ↦→ (1 2). Let us perform some calculations related to this group homomor-
phism:
gap> S4 := SymmetricGroup(4);;
gap> S3 := SymmetricGroup(3);;
gap> f := GroupHomomorphismByImages(S4, S3, \
[(1,2), (2,3), (3,4)], [(1,2), (2,3), (1,2)]);;
gap> K := Kernel(f);;
gap> StructureDescription(K);
"C2 x C2"
gap> IsInjective(f);
false
gap> StructureDescription(S4/K);
"S3"
gap> StructureDescription(Image(f));
"S3"
gap> IsSurjective(f);
true

It is important to remark that the string returned by StructureDescription

is not an isomorphism invariant: non-isomorphic groups can have the same string
value and two isomorphic groups in different representations can produce different
strings.

Example 3.6. Two groups of order 20 that can be written as a semidirect product
�5 o �4. We see that StructureDescription does not distinguish such groups:
gap> List(AllSmallGroups(Size, 20), StructureDescription);
["C5 : C4", "C20", "C5 : C4", "D20", "C10 x C2"]

To identify groups in the database SmallGroups, one uses the function IdGroup.
Here we have some examples:
gap> IdGroup(SymmetricGroup(3));
[6, 1]
gap> IdGroup(SymmetricGroup(4));
[24, 12]
gap> IdGroup(AlternatingGroup(4));
[12, 3]
gap> IdGroup(DihedralGroup(8));
[8, 3]
gap> IdGroup(QuaternionGroup(8));
[8, 4]

Example 3.7. In [31], T. Lam and D. Leep proved that each index-two subgroup of
Aut(S6) is isomorphic either to S6, PGL2 (9) or to the Mathieu group M10. Let’s
check this claim using the function IdGroup:

100 3 Advanced group theory

gap> autS6 := AutomorphismGroup(SymmetricGroup(6));;
gap> List(SubgroupsOfIndexTwo(autS6), IdGroup);
[[720, 764], [720, 763], [720, 765]]
gap> IdGroup(PGL(2,9));
[720, 764]
gap> IdGroup(MathieuGroup(10));
[720, 765]
gap> IdGroup(SymmetricGroup(6));
[720, 763]

Example 3.8. Now we prove a theorem of R. Guralnick [19]. The theorem states that
the smallest finite group � such that {[G, H] : G, H ∈ �} ≠ [�,�] has order 96.
gap> G := First(AllSmallGroups(Size, [1..100]),\
> x->Order(DerivedSubgroup(x)) <> Size(\
> Set(Cartesian(x, x), Comm)));;
gap> Order(G);
96
gap> IdGroup(G);
[96, 3]

With IdGroup (or with IsomorphismGroups) we check that

� ' 〈(1 2 5) (3 6 11) (4 7 9) (8 10 12), (1 8 4 3) (5 12) (6 10) (9 11)〉.

How do we find this isomorphism? We use IsomorphismPermGroup to construct a
faithful representation of � as a permutation group. What is the minimal possible
degree of a faithful permutation representation? We can find this number with
MinimalFaithfulPermutationDegree:

gap> MinimalFaithfulPermutationDegree(G);
12

With the function, MinimalFaithfulPermutationRepresentation, we construct
an isomorphic permutation group of minimal degree:

gap> f := MinimalFaithfulPermutationRepresentation(G);
[f1, f2, f3, f4, f5, f6] ->
[(1,2,5)(3,6,11)(4,7,9)(8,10,12),

(1,3)(2,10,7,6)(4,8)(11,12),
(2,6)(3,8)(5,12,9,11)(7,10), (5,9)(11,12),
(2,7)(5,9)(6,10)(11,12),
(1,4)(2,7)(3,8)(5,9)(6,10)(11,12)]

We obtain an isomorphic copy of � inside S12. To construct a minimal set of
generators, we then use MinimalGeneratingSet:

gap> P := Image(f);
Group([(1,2,5)(3,6,11)(4,7,9)(8,10,12),

(1,3)(2,10,7,6)(4,8)(11,12),
(2,6)(3,8)(5,12,9,11)(7,10),
(5,9)(11,12), (2,7)(5,9)(6,10)(11,12),

3.1 Group databases 101

(1,4)(2,7)(3,8)(5,9)(6,10)(11,12)])
gap> MinimalGeneratingSet(P);
[(1,2,5)(3,6,11)(4,7,9)(8,10,12),

(1,8,4,3)(5,12)(6,10)(9,11)]

In Example 3.8 we could have tried to find a faithful representation of small
degree with the function SmallerDegreePermutationRepresentation. Note that
independent calls to this function may return representations of different and non-
minimal degrees. In the same vein, SmallGeneratingSet returns a “small" set of
generators that may not be of minimal size. In general, the functions mentioned in
this remark run faster than those used in Example 3.8.

For a finite group �, let cs(�) denote the set of sizes of the conjugacy classes of
�, that is

cs(�) B {|6� | : 6 ∈ �}.

For example,

cs(S3) = {1, 2, 3}, cs(A5) = {1, 12, 15, 20}, cs(SL2 (3)) = {1, 4, 6}.

Here is the code that verifies our claim:

gap> cs := function(G)
> return Set(ConjugacyClasses(G), Size);
> end;
function(G) ... end
gap> cs(SymmetricGroup(3));
[1, 2, 3]
gap> cs(AlternatingGroup(5));
[1, 12, 15, 20]
gap> cs(SL(2,3));
[1, 4, 6]

We will write �=,: to denote the :-th group of size = in the database, thus �=,:
is a group with IdGroup equal to [n, k].

Example 3.9. This example is taken from [41, Theorem A] and answers a question
posed by R. Brauer [7, Question 2(ii)]. G. Navarro proved that there exist finite
groups � and � such that � is solvable, � is not solvable and cs(�) = cs(�).

Let
� = �240,13 × �960,1019 and � = �960,239 × �480,959.

Then � is solvable and � is not. Moreover, cs(�) = cs(�), as the following code
shows:

gap> U := SmallGroup(960, 239);;
gap> V := SmallGroup(480, 959);;
gap> L := SmallGroup(960, 1019);;
gap> K := SmallGroup(240, 13);;
gap> UxV := DirectProduct(U, V);;
gap> KxL := DirectProduct(K, L);;

102 3 Advanced group theory

gap> IsSolvable(UxV);
false
gap> IsSolvable(KxL);
true

One could try to directly compute cs(* ×+). However, this calculation seems to be
hard. The trick is to use that

cs(* ×+) = {=< : = ∈ cs(*), < ∈ cs(+)}.

Here is the code:

gap> cs(KxL) = Set(Cartesian(cs(U), cs(V)), x->x[1]*x[2]);
true

Example 3.10. This example appeared in [41]. It answers another question raised
by R. Brauer [7, Question 4(ii)]. G. Navarro proved that there exist finite groups
� and � such that � is nilpotent, / (�) = 1 and cs(�) = cs(�). The groups are
� = D8 × �243,26 and � = �486,36. Here is the code:

gap> K := DihedralGroup(8);;
gap> L := SmallGroup(243, 26);;
gap> H := SmallGroup(486, 36);;
gap> IsTrivial(Center(H));
true
gap> G := DirectProduct(K, L);;
gap> cs(G) = cs(H);
true
gap> IsNilpotent(G);
true

Example 3.11. Let ? be a prime number and � be a finite ?-group. We denote by
B< (�) the number of subgroups of� of order ?<. The following function computes
B< (�) when � is a ?-group:

gap> s := function(m, G)
> local p, f;
> if not IsPGroup(G) then
> return fail;
> fi;
> p := PrimeDivisors(Order(G))[1];
> f := Filtered(ConjugacyClassesSubgroups(G), \

x->Order(Representative(x)) = p^m);
> return Sum(f, Size);
> end;
function(m, G) ... end

For example,

3.1 Group databases 103

B< (D32) =

1 if < ∈ {0, 5},
17 if < = 1,

9 if < = 2,

5 if < = 3,

3 if < = 4.

The previous result was obtained with the following code:
gap> G := DihedralGroup(2^5);;
gap> List([0..5], m->s(m,G));
[1, 17, 9, 5, 3, 1]

In [2], Berkovich proved that if ? > 2 is a prime number and� is a finite ?-group
of order ?= and exponent ?, then

B< (�) ≡ 1 + ? + 2?2 mod ?3

for all < ∈ {2, . . . , = − 2}.
The following function tests Berkovich’s theorem:

gap> Berkovich := function(G)
> local p, n;
> p := PrimeDivisors(Order(G))[1];
> n := LogInt(Order(G), p);
> return ForAll([2..n-2], m->RemInt(1+p+2*p^2-s(m,G), p^3) = 0);
> end;
function(G) ... end

With this, we now quickly check the theorem for some particular groups:
gap> G := Random(AllGroups(Size, 3^7, Exponent, 3));;
gap> Berkovich(G);
true
gap> G := Random(AllGroups(Size, 5^4, Exponent, 5));;
gap> Berkovich(G);
true
gap> G := Random(AllGroups(Size, 11^4, Exponent, 11));;
gap> Berkovich(G);
true

A group � is said to be quasisimple if � is perfect and �// (�) is (non-abelian)
simple.

Example 3.12. The group SL2 (5) is quasisimple:
gap> G := SL(2,5);;
gap> IsPerfect(G);
true
gap> IsSimple(G/Center(G));
true
gap> IsQuasiSimple(G);
true

104 3 Advanced group theory

However, GL2 (5) is not quasisimple since it is not perfect:

gap> G := GL(2,5);;
gap> IsPerfect(G);
false
gap> IsQuasiSimple(G);
false

Example 3.13. We prove that the smallest finite perfect group that is not quasisimple
is a group of the form �4

2 o A5.
With SizeNumbersPerfectGroups we list the orders of perfect groups in the

database and find the group needed:

gap> for x in SizeNumbersPerfectGroups() do
> G := PerfectGroup(x);
> if not IsQuasiSimple(G) then
> Display(x);
> break;
> fi;
> od;
[960, 1]
gap> StructureDescription(G);
"(C2 x C2 x C2 x C2) : A5"

There are two perfect groups of order 960. Both groups are not quasisimple:

gap> NrPerfectGroups(960);
2
gap> IsQuasiSimple(PerfectGroup(960, 2));
false

Example 3.14. In [3], H. Blau proved proved that there exist (finitelymany) quasisim-
ple groups that contain central elements that are non-commutators. The smallest of
such groups is a Schur covering of A6.

We first write an efficient function to compute the set of commutators of a given
group:

gap> SetOfCommutators := function(G)
> local T;
> T := Elements(RightTransversal(G, Center(G)));
> return Set(Cartesian(T, T), x->Comm(x[1], x[2]));
> end;
function(G) ... end

Note that this function is more efficient than the one we presented on page 61.
In the following code it is crucial to construct perfect groups as permutation

groups, as calculations will be much faster:

gap> for x in SizeNumbersPerfectGroups() do
> G := PerfectGroup(IsPermGroup, x);
> dif := Difference(Center(G), SetOfCommutators(G));
> if Size(dif) > 0 then

3.1 Group databases 105

> Display(x);
> break;
> fi;
> od;
[2160, 1]
gap> A6 := AlternatingGroup(6);;
gap> not IsomorphismGroups(SchurCover(A6), G) = fail;
true

A group � is =-transitive on a set - if for any two sequences of distinct points
G1, . . . , G= and H1, . . . , H= there exists 6 ∈ � such that G6

8
= H8 for all 8 ∈ {1, . . . , =}.

If in addition such 6 is always unique, we say that � is sharply =-transitive on - .

Example 3.15. Let us prove that there is no sharply 4-transitive group of degree
seven or nine. This solves [6, Exercise 1.18].

We first create a list of all transitive groups of degrees seven and nine and we
keep only those groups that are at least 4-transitive:

gap> l := AllTransitiveGroups(NrMovedPoints, [7, 9], \
> Transitivity, [4..9]);
[A7, S7, A9, S9]

Finally, we check that none of these groups are sharply 4-transitive. For that purpose,
we see that the action on tuples is never regular:

gap> ForAny(l, x->IsRegular(x, \\
> Arrangements([1..NrMovedPoints(x)], 4), OnTuples));
false

It is known that a finite permutation group that does not contain the alternating group
is, at most, 5-transitive. Except for the alternating and symmetric groups, the only
finite groups which are 4- or 5-transitive are the Mathieu groups M11, M12, M23

and M24. The proof of this statement depends on the classification of finite simple
groups.

Let � be a group that acts transitively on a set - . A block of the action is a
non-empty subset Δ of - such that either Δ6 = Δ or Δ6 ∩ Δ = ∅ for all 6 ∈ �. We
say that � is primitive on - if the only blocks are the one-element subsets of - and
- .

Example 3.16. Let us prove that primitive groups of degree eight are double transi-
tive. First, we note that there are seven primitive groups of degree eight:

gap> l := AllPrimitiveGroups(NrMovedPoints, 8);
[AGL(1, 8), AGammaL(1, 8), ASL(3, 2),

PSL(2, 7), PGL(2, 7), A(8), S(8)]

To check that all these groups are indeed at least 2-transitive, we use the function
Transitivity:

106 3 Advanced group theory

gap> List(l, Transitivity);
[2, 2, 3, 2, 3, 6, 8]
gap> ForAll(last, x->x > 1);
true

The commuting probability ?(�) of a finite group � is defined as the probability
that a randomly chosen pair of elements of � commute. Then ?(�) = : (�)/|� |,
where : (�) is the number of conjugacy classes of �. Problem 2.59 asks to compute
the commuting probability of a finite group. We first present a solution to this
problem:

gap> CommutingProbability := G->NrConjugacyClasses(G)/Order(G);
function(G) ... end

In 1970, J. C. Dixon observed that the commuting probability of a finite non-
abelian simple group is ≤ 1/12. This bound is attained for the alternating simple
group A5:

gap> CommutingProbability(AlternatingGroup(5));
1/12

One can find Dixon’s proof in the 16-th volume of the Canadian Mathematical
Bulletin of 1973. The proof we present here is based on a proof due to I. Sadofschi
Costa. We first assume that the commuting probability of � is > 1/12. Since � is
a non-abelian simple group, the identity is the only central element. Let us assume
first that there is a conjugacy class of � of size <, where < is such that 1 < < ≤ 12.
Then � is a transitive subgroup of S<. For these groups the problem is easy: we
show that there are no non-abelian simple groups that act transitively on sets of
size < ∈ {2, . . . , 12} with commuting probability > 1/12. To do this, we list these
transitive groups and their commuting probabilities and verify that all commuting
probabilities are ≤ 1/12:
gap> l := AllTransitiveGroups(NrMovedPoints, [2..12], \\
> IsAbelian, false, IsSimple, true);;
[A5, L(6) = PSL(2,5) = A_5(6), A6,

L(7) = L(3,2), A7, L(8)=PSL(2,7), A8,
L(9)=PSL(2,8), A9, A_5(10), L(10)=PSL(2,9),
A10, L(11)=PSL(2,11)(11), M(11), A11, A_5(12),
L(2,11), M_11(12), M(12), A12]

gap> List(l, CommutingProbability);
[1/12, 1/12, 7/360, 1/28, 1/280, 1/28, 1/1440,

1/56, 1/10080, 1/12, 7/360, 1/75600, 2/165,
1/792, 31/19958400, 1/12, 2/165, 1/792, 1/6336,
43/239500800]

gap> ForAny(l, x->CommutingProbability(x) > 1/12);
false

Now assume that all non-trivial conjugacy classes of � have at least 13 elements.
Then the class equation implies that

3.1 Group databases 107

|� | ≥ 13

12
|� | − 12,

and therefore |� | ≤ 144. Thus one needs to check what happens with groups of
order ≤ 144. But we know that the only non-abelian simple group of size ≤ 144 is
the alternating simple group A5.
gap> AllGroups(Size, [2..144], IsAbelian, false, IsSimple, true);
[Alt([1 .. 5])]

The following example implements a remarkable trick that goes back to R. Baer.
We refer to [27, Lemma 4.4.37] for more information.

Example 3.17 (Baer trick). Let � be a finite nilpotent group of odd order and nilpo-
tency class at most two. For example, the small group �27,3 has nilpotency class
two:
gap> G := SmallGroup(27, 3);;
gap> NilpotencyClassOfGroup(G);
2

Since � has odd order, the map � → �, G ↦→ G2, is bĳective. To construct this map,
we use MappingByFunction:
gap> f := MappingByFunction(G, G, x->x^2);;
gap> IsBijective(f);
true

In particular, every element G of � admits a unique square root
√
G:

gap> sqrt := Inverse(f);;

Baer proved that the operation

G + H = GH
√
[H, G]

turns � into an abelian group. To construct this group, we use Cayley’s theorem:
gap> BaerTrick := function(G)
> local m, i, j, x, y, l, sqrt;
> n := Order(G);
> l := AsList(G);
> m := NullMat(n,n);
> sqrt := Inverse(MappingByFunction(G, G, x->x^2));
> for i in [1..n] do
> x := l[i];
> for j in [1..n] do
> y := l[j];
> m[i][j] := Position(l, x*y*sqrt(Comm(y,x)));
> od;
> od;
> return Group(List(m, PermList));
> end;
function(G) ... end

108 3 Advanced group theory

Group Baer trick
�27,3 ' (�3 ×�3) o�3 �3 ×�3 ×�3

�27,4 ' �9 o�3 �9 ×�3

�81,3 ' (�9 o�3) o�3 �9 ×�3 ×�3

�81,4 ' �9 o�9 �9 ×�9

�81,6 ' �27 o�3 �27 ×�3

�81,12 ' �3 × ((�3 ×�3) o�3) �3 ×�3 ×�3 ×�3

�81,13 ' �3 × (�9 o�3) �9 ×�3 ×�3

�81,14 ' (�9 ×�3) o�3 �9 ×�3 ×�3

For example, the table
shows abelian groups obtained by Baer’s construction. The code to produce such
table is the following:
gap> for G in AllGroups(Size, [1,3..99], \
> IsNilpotent, true, NilpotencyClassOfGroup, 2) do
> A := BaerTrick(G);
> Print(IdGroup(G), ", ", StructureDescription(G), ", ", \
> StructureDescription(A), "\n");
> od;
[27, 3], (C3 x C3) : C3, C3 x C3 x C3
[27, 4], C9 : C3, C9 x C3
[81, 3], (C9 x C3) : C3, C9 x C3 x C3
[81, 4], C9 : C9, C9 x C9
[81, 6], C27 : C3, C27 x C3
[81, 12], C3 x ((C3 x C3) : C3), C3 x C3 x C3 x C3
[81, 13], C3 x (C9 : C3), C9 x C3 x C3
[81, 14], (C9 x C3) : C3, C9 x C3 x C3

3.2 Representations

A (matrix) representation of a group � is a group homomorphism

d : � → GL= (), 6 ↦→ d6,

where = ≥ 1 and is a field. The representation d is said to be faithful if d is
injective. The character of the representation d is the function j : � → where
j(6) is trace of the matrix d6. Recall that, when � is finite and |� | is invertible in
 , the representation d is irreducible if and only if

〈j, j〉 = 1

|� |
∑
6∈�

j(6)j(6−1) = 1.

We refer to [26] and [49] for an introduction to the representation theory of finite
groups.

Example 3.18. Let us construct the representation d of A4 given by

3.2 Representations 109

(1 2) (3 4) ↦→ ©«
0 1 −1
1 0 −1
0 0 −1

ª®¬ , (1 2 3) ↦→ ©«
0 0 −1
0 1 −1
1 0 −1

ª®¬ .
We use the function GroupHomomorphismByImages:

gap> A4 := AlternatingGroup(4);;
gap> a := [[0, 1, -1], [1, 0, -1], [0, 0, -1]];;
gap> b := [[0, 0, -1], [0, 1, -1], [1, 0, -1]];;
gap> rho := GroupHomomorphismByImages(A4,\
> [(1,2)(3,4), (1,2,3)], [a, b]);;
gap> IsGroupHomomorphism(rho);
true

This is indeed a faithful representation of A4:

gap> IsTrivial(Kernel(rho));
true

Just to see how it works, let us compute d (1 3 2) , the image of (1 3 2) ∈ A4 under d.
We are working with 3 × 3 matrices so it is better to use the function Display:

gap> Display(Image(rho, (1,3,2)));
[[-1, 0, 1],

[-1, 1, 0],
[-1, 0, 0]]

Now we construct the character j of d. We also check that d is irreducible since

〈j, j〉 = 1

|A4 |
∑
G∈A4

j(G)j(G−1) = 1.

gap> chi := x->TraceMat(x^rho);;
gap> 1/Order(A4)*Sum(List(A4, x->chi(x)*chi(x^(-1))));
1

We now construct irreducible representations of a given group. This can be done
with the package Repsn, written by V. Dabbaghian.

Example 3.19. Let us construct the irreducible representations of S3. The irreducible
characters of a finite group can be constructed with Irr:

gap> S3 := SymmetricGroup(3);;
gap> irr := Irr(S3);
[Character(CharacterTable(Sym([1 .. 3])), [1, -1, 1]),

Character(CharacterTable(Sym([1 .. 3])), [2, 0, -1]),
Character(CharacterTable(Sym([1 .. 3])), [1, 1, 1])]

To construct irreducible representations we need to load the package repsn:

gap> LoadPackage("repsn");

110 3 Advanced group theory

The package contains IrreducibleAffordingRepresentation. This function
produces irreducible representations from irreducible characters. Since we are work-
ing with S3, we will only need to consider the character of degree two. We will
produce the faithful representation S3 → GL2 (C) given by

(1 2 3) ↦→
(
l2 0
0 l

)
, (1 2) ↦→

(
0 l

l2 0

)
,

where l is a primitive cubic root of one. Here is the code:

gap> f := IrreducibleAffordingRepresentation(irr[2]);
[(1,2,3), (1,2)] -> [[[E(3)^2, 0], [0, E(3)]],

[[0, E(3)], [E(3)^2, 0]]]
gap> Image(f, (1,2,3));
[[E(3)^2, 0], [0, E(3)]]
gap> Display(Image(f, (1,2,3)));
[[E(3)^2, 0],

[0, E(3)]]
gap> Display(Image(f, (1,2)));
[[0, E(3)],

[E(3)^2, 0]]

In [4, Problem 1], R. Brauer asked which algebras are group algebras. This
question might be very hard to answer in a general situation. Here we play with some
particular examples, combining algebra and computer calculations.

Example 3.20. Is
C × "2 (C) × "5 (C)

a (complex) group algebra?
The answer is no. By Wedderburn’s theorem, if C×"2 (C) ×"5 (C) is the group

algebra of some group �, then � has order 30 with three irreducible characters of
degrees one, two and five, respectively. We will prove that there are no such groups.

We list the degrees of irreducible characters of groups of order 30. We see that
there are four groups of order 30 and none of them has exactly three irreducible
characters:

gap> n := 30;;
gap> for G in AllGroups(Size, n) do
> Display(Size(Irr(G)));
> od;
15
12
9
30

We now compute the degrees of the irreducible characters of groups of order 30:

gap> for G in AllGroups(Size, n) do
> Print(CharacterDegrees(G), "\n");
> od;

3.2 Representations 111

[[1, 10], [2, 5]]
[[1, 6], [2, 6]]
[[1, 2], [2, 7]]
[[1, 30]]

In fact, this shows that the groups algebras of groups of order 30 are

C10 × "2 (C)5, C6 × "2 (C)6, C2 × "2 (C)7, C30.

The package CTblLib, written by T. Breuer, contains character tables of some
groups. For example, it includes the character tables of all the sporadic simple groups,
and several of their matrices (over the rationals and finite fields) and permutation
representations.

Example 3.21. The first Janko group J1 is a simple group of order 175560. It has
15 conjugacy classes (and hence 15 irreducible representations). We can get all this
information only from the character table:

gap> t := CharacterTable("J1");;
gap> Size(t);
175560
gap> IsSimple(t);
true
gap> NrConjugacyClasses(t);
15
gap> Size(Irr(t));
15
gap> LinearCharacters(t);
[Character(CharacterTable("J1"),

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])]
gap> CharacterDegrees(t);
[[1, 1], [56, 2], [76, 2], [77, 3],

[120, 3], [133, 3], [209, 1]]
gap> SizesConjugacyClasses(t);
[1, 1463, 5852, 5852, 5852, 29260, 25080, 17556,

17556, 15960, 11704, 11704, 9240, 9240, 9240]
gap> SizesCentralizers(t);
[175560, 120, 30, 30, 30, 6, 7, 10, 10, 11, 15, 15,

19, 19, 19]

The package AtlasRep provides an interface to the Atlas of Finite Group Rep-
resentations [11]. It comprises representations of some (almost) simple groups and
information about their maximal subgroups and conjugacy classes. It was prepared
by R. Abbott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J.
Tripp, P. Walsh and R. Wilson. To load the package we proceed as follows:

gap> LoadPackage("atlasrep");

We refer to the atlasrep manual for information related to the different ways of
obtaining the database from the Internet.

112 3 Advanced group theory

Example 3.22. We compute the structure of the Sylow subgroups of the first Janko
group J1. By default, the package uses a permutation representation (inside S266)
for the group J1:
gap> J1 := AtlasGroup("J1");
<permutation group of size 175560 with 2 generators>
gap> Collected(Factors(Order(J1)));
[[2, 3], [3, 1], [5, 1], [7, 1], [11, 1], [19, 1]]
gap> NrMovedPoints(J1);
266
gap> for p in PrimeDivisors(Order(J1)) do
> Display(StructureDescription(SylowSubgroup(J1, p)));
> od;
C2 x C2 x C2
C3
C5
C7
C11
C19

The function DisplayAtlasInfo displays all the information available on a given
group. For example, regarding the Janko group J1, the first lines of the output are:
gap> DisplayAtlasInfo("J1");
Representations for G = J1: (all refer to std. generators 1)

1: G <= Sym(266) rank 5, on cosets of L2(11) (1st max.)
2: G <= Sym(1045) rank 11, on cosets of 2^3:7:3 (2nd max.)
3: G <= Sym(1463) rank 22, on cosets of 2xA5 (3rd max.)
4: G <= Sym(1540) rank 21, on cosets of 19:6 (4th max.)
5: G <= Sym(1596) rank 19, on cosets of 11:10 (5th max.)
6: G <= Sym(2926) rank 67, on cosets of D6xD10 (6th max.)
7: G <= Sym(4180) rank 107, on cosets of 7:6 (7th max.)
8: G <= GL(20,2) character 20a
...

The full output shows that the package contains 91 (faithful) representations for J1.
The function AtlasGenerators returns a record with information on a particular

representation. For example, the 47-th one is a representation of dimension seven
over the field F11:
gap> recJ1 := AtlasGenerators("J1", 47);;
gap> recJ1!.ring;
GF(11)
gap> gens := recJ1!.generators;
[< immutable compressed matrix 7x7 over GF(11) >,

< immutable compressed matrix 7x7 over GF(11) >]
gap> Display(gens[1]);

. 7 9 9 10 7 9
7 . 1 4 3 3 4
9 1 2 8 3 6 2
9 4 8 10 1 6 .

10 3 3 1 8 9 1
7 3 6 6 9 1 3

3.2 Representations 113

9 4 2 . 1 3 .
gap> Display(gens[2]);

5 7 1 8 5 8 2
10 4 10 . 3 3 8
5 10 8 9 1 2 1
2 3 3 6 1 2 9
7 4 7 2 10 7 3
3 9 . 4 2 3 5
3 4 3 3 9 4 9

gap> Order(Group(gens));
175560
gap> IsSimple(Group(gens));
true

Example 3.23. We now construct the first Conway group Co1 and check that each
Sylow 2-subgroup is self-normalizing:

gap> Co1 := AtlasGroup("Co1");
<permutation group of size 4157776806543360000 with 2 generators>
gap> Collected(Factors(Order(Co1)));
[[2, 21], [3, 9], [5, 4], [7, 2], [11, 1],

[13, 1], [23, 1]]
gap>
gap> IsSimple(Co1);
true
gap> P := SylowSubgroup(Co1, 2);
<permutation group of size 2097152 with 16 generators>
gap> N := Normalizer(Co1, P);
<permutation group with 16 generators>
gap> Order(N) = Order(P);
true

The package AtlasRep contains representative of conjugacy classes of (some)
maximal subgroups of (some) finite sporadic simple groups.

Example 3.24. Let Th be the Thompson sporadic simple group. Using maximal
subgroups we will easily describe the structure of the Sylow 5-subgroups: these are
semidirect products of the form �2

5 o �5. To this aim, we first get the generators
of the 10-th maximal subgroup of Th which has order 12000 and hence contains a
Sylow 5-subgroup ofTh. This maximal subgroup is represented using matrices over
F2. As group calculations involving big matrices are, in general, hard to perform, we
use a permutation group representation:

gap> gens := AtlasGenerators("Th", 1, 10).generators;
[<an immutable 248x248 matrix over GF2>,

<an immutable 248x248 matrix over GF2>]
gap> m10 := Image(IsomorphismPermGroup(Group(gens)));;
gap> Order(m10);
12000
gap> StructureDescription(SylowSubgroup(m10, 5));
"(C5 x C5) : C5"

114 3 Advanced group theory

Can you try to compute the structure of the Sylow 5-subgroups doing the calculations
directly in Th?

We say that two finite groups have the same character table if their character
tables differ from permutations of rows and columns. There are non-isomorphic
groups which have the same character table.

Example 3.25. It is well-known that the groups D8 and &8 are non-isomorphic and
yet have the same character table. This can be easily seen as follows:
gap> D8 := DihedralGroup(8);;
gap> t_D8 := CharacterTable(D8);;
gap> Display(t_D8);
CT1

2 3 2 2 3 2

1a 2a 4a 2b 2c

X.1 1 1 1 1 1
X.2 1 -1 1 1 -1
X.3 1 1 -1 1 -1
X.4 1 -1 -1 1 1
X.5 2 . . -2 .
gap> Q8 := QuaternionGroup(8);;
gap> t_Q8 := CharacterTable(Q8);;
gap> Display(t_Q8);
CT2

2 3 2 2 3 2

1a 4a 4b 2a 4c
2P 1a 2a 2a 1a 2a
3P 1a 4a 4b 2a 4c

X.1 1 1 1 1 1
X.2 1 -1 -1 1 1
X.3 1 -1 1 1 -1
X.4 1 1 -1 1 -1
X.5 2 . . -2 .

It can be proved that D8 and &8 are not isomorphic in many different ways. For
example, this follows from counting the number of elements of order two:
gap> OrdersClassRepresentatives(t_D8);
[1, 2, 4, 2, 2]
gap> OrdersClassRepresentatives(t_Q8);
[1, 4, 4, 2, 4]

With the function TransformingPermutations we verify that the matrices of
characters are equivalent:
gap> Display(Irr(t_D8));
[[1, 1, 1, 1, 1],

3.2 Representations 115

[1, -1, 1, 1, -1],
[1, 1, -1, 1, -1],
[1, -1, -1, 1, 1],
[2, 0, 0, -2, 0]]

gap> Display(Irr(t_Q8));
[[1, 1, 1, 1, 1],

[1, -1, -1, 1, 1],
[1, -1, 1, 1, -1],
[1, 1, -1, 1, -1],
[2, 0, 0, -2, 0]]

gap> TransformingPermutations(Irr(t_D8), Irr(t_Q8));
rec(columns := (), group := Group([(3,5), (2,3)]),

rows := (2,3,4))

A Brauer pair is a pair of non-isomorphic finite groups with the same character
tables and power maps (up to permutation); we refer to [34, Definition 2.6.1] for a
more precise definition. The notion is based on a question posed by R. Brauer in [4],
where he asked whether such pairs exist. The first example of a Brauer pair goes
back to E. Dade [13].

Example 3.26 (Dade’s solution to Brauer’s problem). Dade’s paper shows the exis-
tence of Brauer pairs of groups of order ?7, for ? ≥ 5 a prime number. These groups
have nilpotency class three and exponent ? (with this, the condition on power maps
is automatically satisfied once we know the groups have the same character table).

To check character tables up to permutations of rows and columns one uses the
function TransformingPermutations. However, as the use of this function is quite
expensive in our groups, we will try to find two non-isomorphic groups of order 57
of nilpotency class three and exponent five with exactly the same character table:

gap> p := 5;;
gap> m := 7;;
gap> l := AllSmallGroups(Size, p^m, Exponent, \
> p, NilpotencyClassOfGroup, 3);;
> tables := List(l, CharacterTable);;
> for c in Combinations([1..Size(l)], 2) do
> x := tables[c[1]];
> y := tables[c[2]];
> if Irr(x) = Irr(y) then
> Display(IdGroup(UnderlyingGroup(x)));
> Display(IdGroup(UnderlyingGroup(y)));
> break;
> fi;
> od;
[78125, 19912]
[78125, 19913]

Example 3.27. In [15], B. Eick and J. Müller mention that E. Skrzipczyk found pairs
of non-isomorphic groups of order 28 with the same character table and power maps.
The following code uses Skrzipczyk’s ideas in the case of groups of order 36:

116 3 Advanced group theory

gap> p := 3;
gap> m := 6;
gap> l := AllSmallGroups(Size, p^m, Exponent, p^2);;
gap> tables := List(l, CharacterTable);;
gap> for c in Combinations([1..Size(l)], 2) do
> x := tables[c[1]];
> y := tables[c[2]];
> if not NrConjugacyClasses(x) = NrConjugacyClasses(y) then
> continue;
> fi;
> if not Set(CharacterDegrees(x)) = Set(CharacterDegrees(y)) then
> continue;
> fi;
> m_y := Irr(y);
> PowerMap(y, p^m);
> if not \
> TransformingPermutationsCharacterTables(x, y) = fail then
> Display([IdGroup(UnderlyingGroup(x)), \
> IdGroup(UnderlyingGroup(y))]);
> break;
> fi;
> od;
[[729, 44],

[729, 45]]

3.3 Some conjectures

The theory of groups and their representations was developed around 200 years
ago. Still, amazingly enough, many fundamental and easily formulated problems
remain wide open. In this section, we will explore some of these questions using the
computational tools discussed so far.

3.3.1 McKay’s conjecture

For a finite group �, we write Irr(�) to denote the complete set of complex irre-
ducible characters of �. For a prime number ? dividing |� |, one defines

Irr?′ (�) = {j ∈ Irr(�) : ? - j(1)}.

J. McKay posed the following conjecture for simple groups and ? = 2 in [38],
and it was later generalized by M. Isaacs [25]:

Conjecture 3.1 (McKay). Let � be a finite group. If % ∈ Syl? (�), then

| Irr?′ (�) | = | Irr?′ (#� (%)) |.

3.3 Some conjectures 117

For ? = 2, the conjecture was proved by G. Malle and B. Späth in [37]. For other
primes, the conjecture is still open. We refer to [42] for the state-of-the-art.

Example 3.28 (Testing McKay’s conjecture). Let us check Conjecture 3.1 in some
small examples. We first write a naive function that checks the conjecture:

gap> McKay1 := function(G, p)
> local N, n, m;
> N := Normalizer(G, SylowSubgroup(G, p));
> n := Number(Irr(G), x->Degree(x) mod p <> 0);
> m := Number(Irr(N), x->Degree(x) mod p <> 0);
> return n = m;
> end;
function(G, p) ... end

With this function, we can easily check the conjecture in several small examples,
such as SL2 (3). This group has order 24, so we need to consider ? ∈ {2, 3}:
gap> McKay1(SL(2,3), 2);
true
gap> McKay1(SL(2,3), 3);
true

The package CTblLib contains character tables of some normalizers of Sylow
subgroups of sporadic simple groups. For example, to obtain the character table of
the normalizer of the Sylow 2-subgroup of the Thompson sporadic group Th we
proceed as follows:

gap> CharacterTable("ThN2");
CharacterTable("ThN2")

We can use this database of normalizers of Sylow subgroups to study some
sporadic simple groups more efficiently:

gap> McKay2 := function(name)
> local t, t_N, p;
> t := CharacterTable(name);
> for p in PrimeDivisors(Size(t)) do
> t_N := CharacterTable(Concatenation(name, "N", String(p)));
> if t_N = fail then
> return fail;
> else
> if not Number(Irr(t), x->Degree(x) mod p <> 0) = \
> Number(Irr(t_N), x->Degree(x) mod p <> 0) then
> return false;
> fi;
> fi;
> od;
> return true;
> end;
function(name) ... end

We use this function to verify the conjecture for some sporadic groups:

118 3 Advanced group theory

gap> McKay2("Fi23");
true
gap> McKay2("Th");
true

However, not all character tables of normalizer of Sylow subgroups are stored:

gap> CharacterTable("Co1N2");
fail

To verify Conjecture 3.1 for the group Co1 we proceed as follows. First, we consider
? = 2 combining the character table of the group with the explicit calculation of the
normalizer of the Sylow 2-subgroup:

gap> t := CharacterTable("Co1");;
gap> Number(Irr(t), x->Degree(x) mod 2 <> 0);
32
gap> Co1 := AtlasGroup("Co1");;
gap> P := SylowSubgroup(Co1, 2);;
gap> N := Normalizer(Co1, P);;
gap> Number(Irr(CharacterTable(N)), x->Degree(x) mod 2 <> 0);
32

For ? ∈ {3, 5, 7, 11, 13, 23}, we use the information available in the library CTblLib:

gap> # McKay’s conjecture for Co1 and odd primes
gap> t := CharacterTable("Co1");;
gap> for p in [3,5,7,11,13,23] do
> t_N := CharacterTable(Concatenation("Co1N", String(p)));
> n := Number(Irr(t_N), x->Degree(x) mod p <> 0);
> m := Number(Irr(t), x->Degree(x) mod p <> 0);
> Print("p = ", p, ": ", n = m, "\n");
> od;
p = 3: true
p = 5: true
p = 7: true
p = 11: true
p = 13: true
p = 23: true

In [55], R. Wilson proved that McKay’s conjecture is true for the sporadic simple
groups using a description of the normalizers of their Sylow subgroups.

3.3.2 Isaacs–Navarro conjecture

In [28], M. Isaacs and G. Navarro proposed a refinement of Conjecture 3.1. For a
prime number ?, an integer : ∈ Z coprime with ?, and a finite group �, let

": (�) = |{j ∈ Irr?′ (�) : j(1) ≡ ±: mod ?}|.

3.3 Some conjectures 119

The following conjecture proposed by Isaacs and Navarro in [28] is still open and
implies McKay’s conjecture.

Conjecture 3.2 (Isaacs–Navarro). Let ? be a prime number. Let � be a finite group
and % be a Sylow ?-subgroup of �. If : ∈ Z is coprime with ?, then

": (�) = ": (#� (%)).

Example 3.29 (Testing Isaacs–Navarro conjecture). Here we have a naive function
that checks Conjecture 3.2:
gap> IsaacsNavarro := function(G, k, p)
> local m, n, N;
> N := Normalizer(G, SylowSubgroup(G, p));
> m := Number(Filtered(Irr(G), x->Degree(x)\
> mod p <> 0), x->Degree(x) mod p in [-k, k] mod p);
> n := Number(Filtered(Irr(N), x->Degree(x)\
> mod p <> 0), x->Degree(x) mod p in [-k, k] mod p);
> return m = n;
> end;
function(G, k, p) ... end

We consider the group SL2 (3). We need to verify the conjecture for ? ∈ {2, 3}
and : ∈ {1, 2}.
gap> IsaacsNavarro(SL(2,3), 1, 2);
true
gap> IsaacsNavarro(SL(2,3), 1, 3);
true
gap> IsaacsNavarro(SL(2,3), 2, 3);
true

3.3.3 Ore’s conjecture

In 1951, O. Ore and, independently, N. Ito proved that every element of an alternating
simple group is a commutator. Ore also mentioned that “it is possible that a similar
theorem holds for any simple group of finite order, but it seems that at present, we
do not have the necessary methods to investigate the question". This gave rise to the
following conjecture:

Conjecture 3.3 (Ore). Every element of a finite non-abelian simple group is a
commutator.

The conjecture is now a theorem thanks to the work of M. Liebeck, E. O’Brien,
A. Shalev and P. Tiep [32]. See [36] for a survey on Ore’s conjecture.

Example 3.30 (Testing Ore’s conjecture). We will prove Ore’s conjecture for some
sporadic simple groups. Let � be a finite simple group. It is known that 6 ∈ � is a
commutator if and only if

120 3 Advanced group theory∑
j∈Irr(�)

j(6)
j(1) ≠ 0.

Let us write a computer script to check whether every element in a group is a
commutator. Our function needs the character table of a group and returns true if
every element of the group is a commutator and false otherwise:
gap> Ore := function(t)
> local s, f, k;
> for k in [1..NrConjugacyClasses(t)] do
> s := 0;
> for f in Irr(t) do
> s := s + f[k]/Degree(f);
> od;
> if s <= 0 then
> return false;
> fi;
> od;
> return true;
> end;
function(t) ... end

Now, for example, we check the conjecture for the first Janko group, the Mathieu
simple groups and the Monster group:
gap> Ore(CharacterTable("J1"));
true
gap> Ore(CharacterTable("M11"));
true
gap> Ore(CharacterTable("M12"));
true
gap> Ore(CharacterTable("M22"));
true
gap> Ore(CharacterTable("M23"));
true
gap> Ore(CharacterTable("M24"));
true
gap> Ore(CharacterTable("M"));
true

3.3.4 Thompson’s conjecture

In [1], Z. Arad and M. Herzog list several conjectures on products of conjugacy
classes in finite non-abelian simple groups. The following conjecture is attributed to
J. G. Thompson:

Conjecture 3.4 (Thompson). Let � be a finite non-abelian simple group. Then there
exists a conjugacy class � of � such that �2 = �, where �2 = {GH : G, H ∈ �}.

The conjecture is still open.

3.3 Some conjectures 121

Example 3.31 (Testing Thompson’s conjecture). We first present a function that
checks the conjecture in a very naive way:
gap> Thompson := function(G)
> local squareSet;
> # Return the square of a set
> squareSet := function(s)
> return Set(Cartesian(s, s), x->x[1]*x[2]);
> end;
> return ForAny(ConjugacyClasses(G), \
> x->Size(squareSet(x)) = Order(G));
> end
function(G) ... end

Now we test the conjecture in some small simple groups:
gap> Thompson(AlternatingGroup(5));
true
gap> Thompson(MathieuGroup(11));
true
gap> Thompson(PSL(2,7));
true

On the other hand, Thompson’s conjecture is about (non-abelian) simple groups, and
it may not hold for arbitrary groups:
gap> Thompson(SymmetricGroup(4));
false
gap> Thompson(SymmetricGroup(5));
false
gap> Thompson(SL(2,7));
false

Note that if � is a conjugacy class of � such that �2 = �, then � is a real
conjugacy class, which means that � = �−1 = {G−1 : G ∈ �}. Equivalently, � is real
if and only if j(G) ∈ R for G ∈ �. To check if a given conjugacy class is real, we can
use the following code:
gap> IsReal := function(C)
> return Inverse(Random(C)) in C;
> end;
function(C) ... end
gap> A4 := AlternatingGroup(4);;
gap> cc := ConjugacyClasses(A4);
[()^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,4)^G]
gap> List(cc, IsReal);
[true, true, false, false]

The use of real conjugacy classes couldmake our previous function slightly better.
In [36], G.Malle mentions an even better technique to check Thompson’s conjecture:
If � is a finite group and � is a real conjugacy class, then �2 = � if and only if, for
some fixed G ∈ �, ∑

j∈Irr(�)

|j(G) |2j(6)
j(1) ≠ 0

122 3 Advanced group theory

holds for all 6 ∈ �. See [34, Exercise 2.6.3].
Real conjugacy classes can be obtained from a character table using the function

RealClasses of the CTblLib package:

gap> t := CharacterTable("A4");;
gap> NrConjugacyClasses(t);
4
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 3]
gap> RealClasses(t);
[1, 2]

We now present another function that verifies Thompson’s conjecture:

gap> Thompson := function(t)
> local k, C;
> k := NrConjugacyClasses(t);
> for C in RealClasses(t) do
> if ForAll([1..k], D->Sum(Irr(t), \
> f->(f[C]^2*f[D])/Degree(f)) <> 0) then
> return true;
> fi;
> od;
> return false;
> end;
function(t) ... end
gap> Thompson(CharacterTable("M"));
true
gap> Thompson(CharacterTable("A10"));
true
gap> Thompson(CharacterTable("Th"));
true
gap> Thompson(CharacterTable("S10"));
false

3.3.5 Szep’s conjecture

In [52, 53], J. Szep formulated the following conjecture:

Conjecture 3.5 (Szep). Let� be a finite non-abelian simple group and G, H ∈ �\{1}.
Then � ≠ �� (G)�� (H).

The conjecture, originally formulated is now a theorem. It was proved by E.
Fisman and Z. Arad in 1987 using the classification of finite simple groups. We refer
to [21] for more information.

gap> Szep := function(G)
> local x, y, C, D, CxD;
> for x in G do
> if IsOne(x) then

3.3 Some conjectures 123

> continue;
> fi;
> for y in G do
> if IsOne(y) or x = y then
> continue;
> fi;
> C := Centralizer(G, x);
> D := Centralizer(G, y);
> CxD := Cartesian(C, D);
> if Size(Set(CxD, z->z[1]*z[2])) = Order(G) then
> return false;
> fi;
> od;
> od;
> return true;
> end;
function(G) ... end

With this naive function, we can verify the conjecture in small examples:

gap> Szep(AlternatingGroup(5));
true
gap> Szep(PSL(2,5));
true
gap> Szep(PSL(2,7));
true

Conjecture 3.5 does not hold for non-simple groups:

gap> Szep(AlternatingGroup(4));
false
gap> Szep(DihedralGroup(34));
false

3.3.6 Arad–Herzog conjecture

In [1], Z. Arad and M. Herzog proposed the following conjecture:

Conjecture 3.6 (Arad–Herzog). If � is a non-abelian simple group, then the product
of two non-trivial conjugacy classes of � is never a single conjugacy class.

The conjecture is still open; we refer the reader to [21] for more information.

Example 3.32 (Testing Arad–Herzog conjecture). We first write a naive function to
test Conjecture 3.6:

gap> AradHerzog1 := function(G)
> local cc, c, d, g, s;
> # We only consider non-trivial conjugacy classes
> cc := Filtered(ConjugacyClasses(G), x->Size(x) > 1);

124 3 Advanced group theory

> for c in cc do
> for d in cc do
> s := Set(Cartesian(c, d), x->x[1]*x[2]);
> g := Random(s);
> if Size(s) = Size(ConjugacyClass(G, g)) then
> return false;
> fi;
> od;
> od;
> return true;
> end;
function(G) ... end

We now study some simple groups:

gap> AradHerzog1(AlternatingGroup(5));
true
gap> AradHerzog1(AlternatingGroup(6));
true

Conjecture 3.6 does not hold in general for non-simple groups:

gap> AradHerzog1(DihedralGroup(6));
false
gap> AradHerzog1(QuaternionGroup(32));
false

Note that conjugacy classes are trivial in abelian groups, so the conjecture vacuously
holds for this class of groups:

gap> AradHerzog1(AbelianGroup([8, 4]));
true

We will now write a better version of the function to test if the conjecture holds:

gap> AradHerzog2 := function(G)
> local classes, c, g, h, s
> # We only consider non-trivial conjugacy classes
> classes := Filtered(ConjugacyClasses(G), x->Size(x)>1);
> for c in classes do
> for g in List(classes, Representative) do
> s := Set(c, x->x*g);
> h := Random(s);
> if ForAll(s, x->IsConjugate(G, x, h)) then
> return false;
> fi;
> od;
> od;
> return true;
> end;
function(G) ... end

Now we can prove the conjecture holds in other simple groups, such as Sz(8),
PSL2 (8), PSL3 (5) and J1:

3.3 Some conjectures 125

gap> AradHerzog2(Sz(IsPermGroup, 8));
true
gap> AradHerzog2(PSL(2,8));
true
gap> AradHerzog2(PSL(3,5));
true
gap> AradHerzog2(AtlasGroup("J1"));
true

Finally, we present a different function to check the conjecture by only using character
tables. The method is based on Lemma 2.2 of [21], which gives a sufficient condition
to check whether the conjecture is true:

gap> AradHerzog3 := function(t)
> local c, i, k;
> k := NrConjugacyClasses(t);
> # We only consider non-trivial conjugacy classes
> c := Filtered([1..k], x->SizesConjugacyClasses(t)[x] > 1);
> for i in IteratorOfTuples(c, 3) do
> if ForAll(Irr(t), \
> x->x[i[1]]*x[i[2]] = x[i[3]]*Degree(x)) then
> return;
> fi;
> od;
> return true;
>end;
function(t) ... end

This function returns true if the conjecture holds. However, when the function does
not return true, one cannot conclude that the conjecture is false.

We prove the conjecture for some sporadic simple groups:

gap> AradHerzog3(CharacterTable("J1"));
true
gap> AradHerzog3(CharacterTable("Co1"));
true
gap> AradHerzog3(CharacterTable("B"));
true
gap> AradHerzog3(CharacterTable("M"));
true

3.3.7 Hughes’ conjecture

We now discuss Hughes’ conjecture. For a finite group � and a prime number ?,
let �? (�) be the subgroup of � generated by all elements of order ≠ ?. We first
construct the Hughes subgroup:

gap> HughesSubgroup := function(p, G)
> return Subgroup(G, Filtered(G, g->not Order(g) = p));

126 3 Advanced group theory

> end;
function(p, G) ... end

Hughes made the following conjecture on the order of �? (�):

Conjecture 3.7 (Hughes). If � is a finite group and ? is a prime number, then

(� : �? (�)) ∈ {1, ?, |� |}.

Let us test some examples:
gap> StructureDescription(HughesSubgroup(2, SymmetricGroup(4)));
"S4"
gap> StructureDescription(HughesSubgroup(2, DihedralGroup(64)));
"C32"
gap> H := AlternatingGroup(5);;
gap> K := PGL(IsPermGroup, 2, 7);;
gap> G := DirectProduct(H, K);;
gap> Order(G);
20160
gap> Order(HughesSubgroup(3, G));
20160

The conjecture is known to be true if ? ∈ {2, 3} or if the group is not a ?-group
[24]. There are counterexamples for ? ∈ {5, 7, 11, 13, 19}; see [23]. Experts suspect
that there are counterexamples for every ? ≥ 5.

3.3.8 Harada’s conjecture

In [22], K. Harada made the following conjecture:

Conjecture 3.8 (Harada). Let � be a finite group, j1, . . . , jB be representatives of
irreducible characters of � and 1, . . . , B be the conjugacy classes of �. Then

B∏
9=1

j 9 (1) divides
B∏
9=1

| 9 |.

The conjecture is wide open; see [43].

Example 3.33 (Testing Harada’s conjecture). We first show a function that checks
whether the conjecture is true:
gap> Harada1 := function(G)
> local m, n;
> m := Product(ConjugacyClasses(G), Size);
> n := Product(Irr(G), Degree);
> return IsInt(m/n);
> end;
function(G) ... end

3.3 Some conjectures 127

We can verify Harada’s conjecture for all groups of order ≤ 60 in one line:
gap> AllGroups(Size, [1..60], IsAbelian, false, Harada1, false);
[]

As a different application, we will prove that Harada’s conjecture is true for all
sporadic simple groups:
gap> Harada2 := function(T)
> local m, n;
> m := Product(SizesConjugacyClasses(T));
> n := Product(Irr(T), Degree);
> return IsInt(m/n);
> end;
function(T) ... end

Wewill verify the conjecture for the 2671 character tables included in the CTblLib
library, which includes all the sporadic simple groups:
gap> tables := AllCharacterTableNames();;
gap> Size(tables);
2671
gap> ForAll(tables, T->Harada2(CharacterTable(T)));
true

3.3.9 Berkovich’s conjecture

In 1973, Y. Berkovich posed the following conjecture:

Conjecture 3.9 (Berkovich). Let % be a finite non-abelian ?-group. Then Aut(%)
contains a non-inner automorphism of order ?.

The existence of a non-inner automorphism of order ?B , for some B ≥ 1, had been
previously established by W. Gaschütz [18].

Example 3.34 (Testing Berkovich’s Conjecture 3.9). The following function test
whether a given ?-group satisfies Berkovich’s conjecture.
gap> Berkovich := function(P)
> local p, A, I, S;
> if Order(P) = 1 or not IsPGroup(P) then
> return fail;
> fi;
> p := PrimeDivisors(Order(P))[1];
> A := AutomorphismGroup(P);
> I := InnerAutomorphismsAutomorphismGroup(A);
> S := SylowSubgroup(A, p);
> return ForAny(Set(S), x->Order(x) = p and not x in I);
> end;;

We test the conjecture in some cases:

128 3 Advanced group theory

gap> P := Random(AllGroups(Size, 2^3, IsAbelian, false));;
gap> Berkovich(P);
true
gap> P := Random(AllGroups(Size, 5^5, IsAbelian, false));;
gap> Berkovich(P);
true
gap> P := Random(AllGroups(Size, 7^3, IsAbelian, false));;
gap> Berkovich(P);
true

3.3.10 Wall’s conjecture

In [54], G. E. Wall made the following conjecture:

Conjecture 3.10 (Wall). Let � be a finite group. Then � has at most |� | maximal
subgroups.

The conjecture is still open. Wall proved Conjecture 3.10 for solvable groups. M.
Liebeck, L. Pyber and A. Shalev proved the conjecture for infinitely many simple
groups; see [33].

Example 3.35 (Testing Wall’s conjecture). The following function checks if Conjec-
ture 3.10 holds for a given group:

gap> Wall1 := function(G)
> local m;
> m := ConjugacyClassesMaximalSubgroups(G);
> return Sum(m, Size) <= Order(G);
> end;
function(G) ... end

Let us verify the conjecture for all groups of order ≤ 60:

gap> AllGroups(Size, [1..60], Wall1, false);
[]

Using the information on character tables, we can quickly verifyWall’s conjecture
for some sporadic simple groups:

gap> Wall2 := function(T)
> return Sum(Maxes(T), \
> x->Size(T)/Size(CharacterTable(x))) <= Size(T);
> end;
function(T) ... end

For example, the conjecture holds for Conway groups, Mathieu groups and the
Baby Monster:

3.3 Some conjectures 129

gap> Wall2(CharacterTable("Co1"));
true
gap> Wall2(CharacterTable("Co2"));
true
gap> Wall2(CharacterTable("Co3"));
true
gap> Wall2(CharacterTable("M11"));
true
gap> Wall2(CharacterTable("M12"));
true
gap> Wall2(CharacterTable("M22"));
true
gap> Wall2(CharacterTable("M23"));
true
gap> Wall2(CharacterTable("M24"));
true
gap> Wall2(CharacterTable("B"));
true

3.3.11 Quillen’s conjecture

If � is a finite group and ? is a prime number, then the ?-core of �, denoted by
$? (�), is the largest normal ?-subgroup of �.

Example 3.36. Let us start with some examples of the calculation of ?-cores:
gap> G := DihedralGroup(100);;
gap> StructureDescription(PCore(G, 2));
"C2"
gap> StructureDescription(PCore(G, 3));
"1"
gap> StructureDescription(PCore(G, 5));
"C25"

Example 3.37. Let us verify that the 2-core of the symmetric group S4 is equal to
the intersection

$2 (%) =
⋂

%∈Syl2 (�)
%

of the Sylow 2-subgroups:
gap> G := SymmetricGroup(4);
Sym([1 .. 4])
gap> P := SylowSubgroup(G, 2);
Group([(1,2), (3,4), (1,3)(2,4)])
gap> C := ConjugacyClassSubgroups(G, P);
Group([(1,2), (3,4), (1,3)(2,4)])^G
gap> Intersection(AsList(C)) = PCore(G, 2);
true

130 3 Advanced group theory

The ?-rank of a finite group � is the maximal dimension (as an F?-vector space)
of an elementary abelian ?-subgroup.

Example 3.38. We show that

<2 (PSL3 (2)) = 2, <2 (PSL3 (4)) = 4, <11(PSL3 (2)) = 0, <2 (S10) = 5.

To compute the ?-rank of a finite group �, it is enough to consider a Sylow ?-
subgroup % of �. Since % is solvable, we can use SubgroupsSolvableGroup; see
Section 2.5. The following function computes the ?-rank of a finite group:

gap> PRank := function(G, p)
> local P, f;
> P := SylowSubgroup(G, p);
> f := Filtered(SubgroupsSolvableGroup(P), IsElementaryAbelian);
> return Maximum(List(f, x->LogInt(Size(x), p)));
> end;
function(G, p) ... end

Let’s see some examples:

gap> PRank(PSL(3,2), 2);
2
gap> PRank(PSL(3,4), 2);
4
gap> PRank(PSL(3,2), 11);
0
gap> PRank(SymmetricGroup(10), 2);
5
gap> PRank(SymmetricGroup(13), 2);
6

A conjecture raised by D. Quillen in 1978 states that for a finite group � and a
prime number ?, if its complex of ?-subgroups is contractible, then the ?-core of �
is trivial; see [47]. A stronger version of the conjecture can be formulated using the
Euler characteristic as follows:

Conjecture 3.11 (Strong Quillen’s conjecture). If � is a finite group, ? is a prime
number and $? (�) = 1, then∑

�∈C?
(−1)<? (�) ?(

<? (�)
2) (� : #� (�)) ≠ 0,

where C? is a set of representatives of conjugacy classes of elementary abelian
?-subgroups of �.

While the original statement of the conjecture was proved for solvable groups
by Quillen, the version mentioned in Conjecture 3.11 is still open even for solvable
groups.

3.3 Some conjectures 131

Example 3.39 (Testing Quillen’s conjecture). We write a naive function to test
Quillen’s conjecture:

gap> Quillen := function(G, p)
> local P, A, f, C;
> if not IsTrivial(PCore(G, p)) then
> return true;
> fi;
> P := SylowSubgroup(G, p);
> f := Filtered(SubgroupsSolvableGroup(P), IsElementaryAbelian);
> C := [];
> for A in f do
> if ForAll(C, x->not IsConjugate(G, A, x)) then
> Add(C, A);
> fi;
> od;
> return Sum(C, x->(-1)^(PRank(x, p))\
> *p^(Binomial(PRank(x, p), 2))*Index(G, Normalizer(G, x))) <> 0;
> end;

Now we test Conjecture 3.11 on some groups:

gap> Quillen(PSL(3,4), 3);
true
gap> Quillen(PSL(3,4), 2);
true
gap> Quillen(SymmetricGroup(13), 5);
true
gap> Quillen(SymmetricGroup(13), 3);
true
gap> Quillen(MathieuGroup(24), 3);
true
gap> Quillen(MathieuGroup(22), 2);
true

Example 3.40. We verify Quillen’s Conjecture 3.11 for all groups of order ≤ 60. To
make our calculations faster, we use the fact the conjecture is trivially true in the
case of ?-groups:

gap> f := Filtered(AllGroups(Size, [1..60]), \
> x->not IsPrimePowerInt(Order(x)));;
gap> for G in f do
> for p in PrimeDivisors(Order(G)) do
> if not Quillen(G, p) then
> Print("False for the group ", IdGroup(G), "!\n");
> fi;
> od;
> od;

This calculation produces no output, meaning that Conjecture 3.11 is true for groups
of order ≤ 60.

132 3 Advanced group theory

3.4 Group rings

Let be a field and � be a (not necessarily finite) group. The group ring � = [�]
is the -algebra with basis {46 : 6 ∈ �} and multiplication induced by

464ℎ = 46ℎ for 6, ℎ ∈ �.

Every element of � is a finite sum of the form

U =
∑
6∈�

_646

for scalars _6 ∈ .
The augmentation ideal � (�) of � is the kernel of the map � → , 46 ↦→ 1.

Thus

� (�) =

∑
6∈�

_646 ∈ � :
∑
6∈�

_6 = 0
 .

Example 3.41. Let be the field of two elements, � = S3 and � = [�]. For
example, 4 (2 3) + 4 (1 2) + 4 (1 2 3) + 4 (1 3) ∈ �. Moreover, � is a non-commutative
algebra of dimension six:

gap> G := SymmetricGroup(3);;
gap> A := GroupRing(GF(2), G);;
gap> IsGroupAlgebra(A);
true
gap> Dimension(A);
6
gap> One(A);
(Z(2)^0)*()
gap> Zero(A);
<zero> of ...
gap> Random(A);
(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3)

We compute the augmentation ideal:

gap> I := AugmentationIdeal(A);;
gap> Dimension(I);
5
gap> A/I;
<algebra of dimension 1 over GF(2)>

We now perform some easy calculations. Let

U = 4 (1 2) + 4 (1 3) ∈ �, V = 4 (1 2) + 4 (1 2 3) + 4 (2 3) ∈ �.

We compute U + V and UV:

3.4 Group rings 133

U + V = 4 (1 3) + 4 (1 2 3) + 4 (2 3) ,
UV = 4id + 4 (2 3) + 4 (1 2 3) + 4 (1 3) .

To perform calculations, we need the canonical embedding � → �:

gap> f := Embedding(G, A);;
gap> a := (1,2)^f+(1,3)^f;
(Z(2)^0)*(1,2)+(Z(2)^0)*(1,3)
gap> b := (1,2)^f+(1,2,3)^f+(2,3)^f;;
gap> a+b;
(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3)
gap> a*b;
(Z(2)^0)*()+(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3)

Note that, for example, U is not invertible:

gap> Inverse(a);
fail
gap> IsUnit(a);
false

We compute the group of invertible elements. It is generated by

4 (1 3) , 4 (1 3 2) , 4 (2 3) + 4 (1 2) + 4 (1 2 3) + 4 (1 3 2) + 4 (1 3) ,

and it is isomorphic to the dihedral group of twelve elements:

gap> U := Units(A);
<group of size 12 with 3 generators>
gap> Order(U);
12
gap> StructureDescription(U);
"D12"
gap> GeneratorsOfGroup(U);
[(Z(2)^0)*(1,3), (Z(2)^0)*(1,3,2),
(Z(2)^0)*(2,3)+(Z(2)^0)*(1,2)+(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2)
+(Z(2)^0)*(1,3)]

Example 3.42. The center of Q[S3] has basis

{4id, 4 (1 2) + 4 (1 3) + 4 (2 3) , 4 (1 2 3) + 4 (1 3 2) }.

We verify this with the following code:

gap> G := SymmetricGroup(3);;
gap> A := GroupRing(Rationals, G);;
gap> Center(A);
<algebra-with-one of dimension 3 over Rationals>
gap> Elements(Basis(Center(A)));
[(1)*(), (1)*(2,3)+(1)*(1,2)+(1)*(1,3),
(1)*(1,2,3)+(1)*(1,3,2)]

134 3 Advanced group theory

An element U of a ring is said to be idempotent if U2 = U.

Example 3.43. Let be the field of two elements, and � = 〈6〉 be the cyclic group
of order three with generator 6 = (1 2 3). The idempotents of [�] are 0, 41, 46,
462 and 46 + 462 .
gap> G := Group([(1,2,3)]);;
gap> A := GroupRing(GF(2), G);;
gap> Idempotents(A);
[<zero> of ..., (Z(2)^0)*(),
(Z(2)^0)*()+(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2),
(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2)]

Let ' be a unitary ring. The Jacobson radical � (') of ' is defined as the
intersection of all left maximal ideals of '. One proves that � (') is indeed an ideal
of ' and that G ∈ � (') if and only if 1 + AG is invertible for all A ∈ '.

Example 3.44. Let be the field of two elements, � = D8 be the dihedral group of
order eight and � = [�]. To have a nicer computer presentation of the elements
of D8 (and hence of �), we turn on the teaching mode:

gap> TeachingMode(true);
#I Teaching mode is turned ON

We now compute the Jacobson radical � (�). It has dimension seven and a basis
is given by

{41 + 4A−1 , 4A−1 + 4A , 4A + 4B , 4B + 4A2 , 4A2 + 4AB , 4AB + 4BA , 4BA + 4BA2 }.

Here is the code:

gap> G := DihedralGroup(8);;
gap> K := GF(2);;
gap> A := GroupRing(K, G);;
gap> J := RadicalOfAlgebra(A);;
gap> Dimension(J);
7
gap> Elements(Basis(J));
gap> Elements(Basis(J));
[(Z(2)^0)*<identity ...>+(Z(2)^0)*r^-1,
(Z(2)^0)*r^-1+(Z(2)^0)*r,
(Z(2)^0)*r+(Z(2)^0)*s, (Z(2)^0)*s+(Z(2)^0)*r^2,
(Z(2)^0)*r^2+(Z(2)^0)*r*s, (Z(2)^0)*r*s+(Z(2)^0)*s*r,
(Z(2)^0)*s*r+(Z(2)^0)*s*r^2]

We also check that, for example, 4BA + 4BA2 is a nilpotent element:

gap> f := Embedding(G, A);;
gap> GeneratorsOfGroup(G);
[r, s]
gap> AssignGeneratorVariables(G);
#I Assigned the global variables [r, s]

3.4 Group rings 135

gap> R := r^f;;
gap> S := s^f;;
gap> a := (Z(2)^0)*R^2+(Z(2)^0)*R*S;;
gap> IsNilpotentElement(A, a);
true
gap> a in J;
true
gap> IsZero(a^2);
true

Example 3.45. Let be the field of three elements, � = S4 and � = [�]. We
compute the Jacobson radical � (�) and check that the elements of the form 1 + G for
G ∈ � (�) are units:
gap> G := SymmetricGroup(4);;
gap> A := GroupRing(GF(3), G);;
gap> J := RadicalOfAlgebra(A);
<algebra of dimension 4 over GF(3)>
gap> Size(J);
81
gap> ForAll(J, x->IsUnit(One(A)+x));
true

Let be a field, � be a group and � = [�]. By definition, the trivial units of
� are the elements of the form _46 for _ ∈ \ {0} and 6 ∈ �.

Example 3.46. Let be the field of two elements and � be the cyclic group of order
two. The group ring [�] has only trivial units:

gap> G := CyclicGroup(IsPermGroup, 2);;
gap> A := GroupRing(GF(2), G);;
gap> Units(A);
<group with 1 generator>
gap> Elements(Units(A));
[(Z(2)^0)*(), (Z(2)^0)*(1,2)]

Recall that Q(8) = {G + H8 : G, H ∈ Q} is the field of Gaussian rationals. Some
examples:

gap> E(4) in GaussianRationals;
true
gap> CF(4) = GaussianRationals;
true
gap> Random(GaussianRationals);
4/3+1/2*E(4)

In the following example, we show different Wedderburn decompositions. For
that purpose, we use the package Wedderga:

gap> LoadPackage("Wedderga");

136 3 Advanced group theory

Example 3.47. Let � be the cyclic group of order four. Let us compute the Wedder-
burn decomposition of Q[�]. We verify that Q[�] ' Q × Q × Q(8).
gap> G := CyclicGroup(4);;
gap> A := GroupRing(Rationals, G);;
gap> WedderburnDecompositionInfo(A);
[[1, Rationals], [1, GaussianRationals], [1, Rationals]]

The smallest algebraic number field for � that is also a splitting field is Q(8). In
particular, the following code shows that, if = Q(8), then [�] ' 4:

gap> B := GroupRing(CF(4), G);;
gap> WedderburnDecompositionInfo(B);
[[1, GaussianRationals],

[1, GaussianRationals],
[1, GaussianRationals],
[1, GaussianRationals]]

Since the field F5 of five elements contains a primitive 4-th root of one, it is a
splitting field for �. In particular, F5 [�] ' (F5)4:
gap> A := GroupRing(GF(5), G);;
gap> WedderburnDecompositionInfo(A);
[[1, 5], [1, 5], [1, 5], [1, 5]]

Example 3.48. Let � = D10 be the dihedral group of ten elements. We show that
Q[�] ' Q × Q × "2 (Q(b + b−1)), where b is a primitive 5-th root of one:

gap> G := DihedralGroup(10);;
gap> K := Rationals;;
gap> A := GroupRing(K, G);;
gap> WedderburnDecompositionInfo(A);
[[1, Rationals], [1, Rationals], [2, NF(5,[1, 4])]]
gap> Dimension(NF(5,[1, 4]));
2

Note that NF(5,[1, 4]) is the smallest field extension of Q that contains the
element b + b−1:
gap> E(5)+E(5)^(-1) in NF(5,[1, 4]);
true
gap> Field(E(5)+E(5)^(-1));
NF(5,[1, 4])

A Lie algebra is a vector space ! with a bilinear map !×! → !, (G, H) ↦→ [G, H],
such that

[G, G] = 0 for all G ∈ !, (3.1)
[G, [H, I]] + [H, [I, G]] + [I, [G, H]] = 0 for all G, H, I ∈ !. (3.2)

Equality (3.2) is known as the Jacobi identity.

3.4 Group rings 137

A Lie algebra ! is semisimple if and only if the only abelian ideal of ! is zero.
Equivalently, ! is semisimple if and only if the solvable radical of ! is zero. The
following function detects semisimplicity:

gap> IsSemiSimple := function(L)
> return Dimension(LieSolvableRadical(L)) = 0;
> end;
function(L) ... end

W. Plesken suggested the study of a certain Lie subalgebra of the group ring
with the classical Lie bracket; see [10]. Let be a field, � be a finite group and
� = [�]. For each 6 ∈ �, let [6 = 6 − 6−1. The Plesken Lie algebra of � is the
vector space generated by {[6 : 6 ∈ �} with Lie bracket given by

[[6, [ℎ] = [6[ℎ − [ℎ[6, 6, ℎ ∈ �.

We use the package Laguna to compute the Plesken Lie algebra of a finite group:

gap> Plesken := function(K, G)
> local L, e, f;
> L := LieAlgebra(GroupRing(K, G));
> f := Embedding(G, L);
> e := g->g^f-Inverse(g)^f;
> return Subalgebra(L, List(G, e));
> end;
function(K, G) ... end

Example 3.49. The Plesken Lie algebra of the alternating group A4 over the field of
two elements has basis

{[(2 3 4) + [(2 4 3) , [(1 3 4) + [(1 4 3) , [(1 2 4) + [(1 4 2) , [(1 2 3) + [(1 3 2) }.

and is not semisimple:

gap> G := AlternatingGroup(4);;
gap> L := Plesken(GF(2), G);;
#I LAGUNA package: Constructing Lie algebra ...
gap> Dimension(L);
4
gap> BasisVectors(Basis(L));
[LieObject((Z(2)^0)*(2,3,4)+(Z(2)^0)*(2,4,3)),
LieObject((Z(2)^0)*(1,3,4)+(Z(2)^0)*(1,4,3)),
LieObject((Z(2)^0)*(1,2,4)+(Z(2)^0)*(1,4,2)),
LieObject((Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2))]

gap> Dimension(LieSolvableRadical(L));
4

Example 3.50. For the symmetric group S3, the Plasken Lie algebra is not semisim-
ple:

gap> L := Plesken(Rationals, SymmetricGroup(3));;

138 3 Advanced group theory

#I LAGUNA package: Constructing Lie algebra ...
gap> Dimension(LieSolvableRadical(L));
1

Example 3.51. We now check that the Plesken Lie algebra of &8 is semisimple and
isomorphic to sl2:

gap> G := QuaternionGroup(8);;
gap> L := Plesken(Rationals, G);
#I LAGUNA package: Constructing Lie algebra ...
<Lie algebra over Rationals, with 8 generators>
gap> Dimension(L);
3
gap> LieSolvableRadical(L);
<Lie algebra of dimension 0 over Rationals>
gap> SemiSimpleType(L);
"A1"

Example 3.52. We verify that the Plesken Lie algebra of the alternating group A5 is
semisimple:

gap> G := AlternatingGroup(5);;
gap> L := Plesken(Rationals, G);;
#I LAGUNA package: Constructing Lie algebra ...
gap> Dimension(L);
22
gap> IsSemisimple(L);
true
gap> SemiSimpleType(L);
"B2 A1 A1 A1 A1"

A theorem of A. M. Cohen and D. E. Taylor characterizes semisimplicity of
complex Plesken Lie algebras [10].

3.5 Kaplansky’s unit conjecture

This section discusses the existence of a counterexample for the following well-
known problem.

Conjecture 3.12 (Kaplansky). Let � be a torsion-free group and a field. Then all
units of [�] are trivial.

It is known that groups satisfying the unique product property satisfy Kaplanksy’s
unit conjecture. In [17], it was shown by G. Gardam that the Promislow group, which
fails the unique product property, also fails Kaplanksy’s unit conjecture over the
finite field of two elements. Nevertheless, the unit problem is still open for fields of
characteristic zero.

3.5 Kaplansky’s unit conjecture 139

In this section, we work with the Promislow group % and show that it fails
the unique product property. We also present Gardam’s theorem as a computer
calculation.

Recall that a group � has the unique product property if for all finite non-empty
subsets � and � of � there exists G ∈ � that can be written uniquely as G = 01 with
0 ∈ � and 1 ∈ �.

Left-ordered groups satisfy the unique product property. However, the converse
does not hold: unique product groups are not necessarily left-ordered. The first
example exhibiting this phenomenon appears in [29].

In the following example, we show that the Promislow group % does not have the
unique product property; see [46].

Example 3.53. The Promislow group

% = 〈0, 1 | 0−1120 = 1−2, 1−1021 = 0−2〉

does not have the unique product property. Let

(= {021, 120, 010−1, (120)−1, (01)−2, 1, (01)20, (01)2, (010)−1,
101, 1−1, 0, 010, 0−1}. (3.3)

We use the representation � → GL4 (Q) given by

0 ↦→
©«
0 1 0 0
2 0 0 0
0 0 0 1/2
0 0 1 0

ª®®®¬ , 1 ↦→
©«
0 0 1 0
0 0 0 1
2 0 0 0
0 1/2 0 0

ª®®®¬
to check that � does not have unique product property, as each

B ∈ (2 = {B1B2 : B1, B2 ∈ (}

admits at least two different decompositions of the form B = GH = DE for G, H, D, E ∈ (.
We first create the matrix representations of 0 and 1.

gap> a := [[0,1,0,0], [2,0,0,0], [0,0,0,1/2], [0,0,1,0]];;
gap> b := [[0,0,1,0], [0,0,0,1], [2,0,0,0], [0,1/2,0,0]];;

Now we create a function that produces the set (.

gap> Promislow := function(x, y)
> return Set([
> x^2*y,
> y^2*x,
> x*y*Inverse(x),
> (y^2*x)^(-1),
> (x*y)^(-2),
> y,
> (x*y)^2*x,
> (x*y)^2,

140 3 Advanced group theory

> (x*y*x)^(-1),
> y*x*y,
> y^(-1),
> x,
> x*y*x,
> x^(-1)
]);
end;;

So the set (of (3.3) will be Promislow(a, b). We now create a function that checks
whether every element of the subset (admits more than one representation:

gap> is_UPP := function(S)
> local l, x, y;
> l := [];
> for x in S do
> for y in S do
> Add(l, x*y);
> od;
> od;
> if ForAll(Collected(l), x->x[2] <> 1) then
> return false;
> else
> return fail;
> fi;
> end;;

Finally, we check whether every element of (admits more than one representation:

gap> S := Promislow(a, b);;
gap> is_UPP(S);
false

In the following example, we reproduce the proof of Gardam’s theorem using
computer calculations.

Example 3.54 (Gardam). Let be the field of two elements. For G = 02, H = 12 and
I = (01)2, let

? = (1 + G) (1 + H) (1 + I−1), @ = G−1H−1 + G + H−1I + I,
A = 1 + G + H−1I + GHI, B = 1 + (G + G−1 + H + H−1)I−1.

Then D = ? + @0 + A1 + B01 is a non-trivial unit in [%].
The subgroup # = 〈G, H, I〉 is a normal free abelian subgroup of rank 3 and

%/# ' �2 ×�2 (see [45, Lemma 13.3.3]). Moreover, the set {1, 0, 1, 01} is a right-
transversal for the subgroup # of %. In particular, this implies that every element U
of [%] can be written uniquely as U0 + U10 + U21 + U301, where U0, U1, U2, U3
are elements in the Laurent polynomial ring [G±1, H±1, I±1]. Therefore, an element
U = U0 + U10 + U21 + U301 is a trivial unit if and only if there exists an index 8 such
that U 9 = 0 for 9 ≠ 8 and U8 is a monomial of [G±1, H±1, I±1].

3.5 Kaplansky’s unit conjecture 141

From the previous paragraph, we conclude that the element D is not a trivial unit
in [%]. Therefore it remains to show that D is indeed a unit. To that purpose, we
explicitly construct its inverse E and check that D−1 = E.

Indeed, we claim that the inverse of D is the element E = ?1 + @10 + A11 + B101,
where

?1 = G
−1 (0−1?0), @1 = −G−1@, A1 = −H−1A, B1 = I

−1 (0−1B0).

We show that DE = ED = 1. We first need to create the group % = 〈0, 1〉. We use the
matrix representation of % given in Example 3.53:

gap> a := [[0,1,0,0], [2,0,0,0], [0,0,0,1/2], [0,0,1,0]];;
gap> b := [[0,0,1,0], [0,0,0,1], [2,0,0,0], [0,1/2,0,0]];;
gap> P := Group([a, b]);

We create the group algebra [%] and the embedding % ↩→ [%]. The field will
be GF(2) and the embedding will be denoted by f.

gap> A := GroupRing(GF(2), P);;
gap> f := Embedding(P, A);;

Next we define the elements G, H and I:

gap> x := Image(f, a^2);;
gap> y := Image(f, b^2);;
gap> z := Image(f, (a*b)^2);;

Now we define the elements ?, @, A and B:

gap> p := (One(A)+x)*(One(A)+y)*(One(A)+Inverse(z));;
gap> r := One(A)+x+Inverse(y)*z+x*y*z;;
gap> q := Inverse(x)*Inverse(y)+x+Inverse(y)*z+z;;
gap> s := One(A)+(x+Inverse(x)+y+Inverse(y))*Inverse(z);;

Finally, we define the coefficients ?1, @1, A1 and B1 of the element E:

gap> p1 := Inverse(x)*p^Image(f, a);;
gap> q1 := -Inverse(x)*q;;
gap> r1 := -Inverse(y)*r;;
gap> s1 := Inverse(z)*s^Image(f, a);;

To conclude, we verify that D−1 = E:

gap> u := p+q*a+r*b+s*a*b;;
gap> v := p1+q1*a+r1*b+s1*a*b;;
gap> IsOne(u*v);
true
gap> IsOne(v*u);
true

142 3 Advanced group theory

3.6 Problems

3.1. Prove that every group of order < 60 is solvable.

3.2. Prove that a group of order 455 is cyclic.

3.3. Let� be a simple group of order 168. Compute the number of elements of order
seven of �.

3.4. Use the function AllSmallNonabelianSimpleGroups to prove that there are
no simple groups of order 2540 and 9075.

3.5. Find a group � of order 36 such that {[G, H] : G, H ∈ �} ≠ [�,�].

3.6. Find a group � of order 27 such that {[G, H] : G, H ∈ �} ≠ [�,�].

3.7. Prove that groups of orders 15, 35, and 77 are cyclic.

3.8. Prove that a simple group of order 60 is isomorphic to A5.

3.9. Prove that the only non-abelian simple group of order < 100 is A5.

3.10. Is the following true? For any finite group�, the set {G2 : G ∈ �} is a subgroup
of �.

3.11. Let � be a finite group and ? a prime number. Without using the functions
AllSubgroups or ConjugacyClassesSubgroups on�, write a script that computes
all the ?-subgroups of �.

3.12. A Carter subgroup � of a group � is a nilpotent self-normalizing subgroup,
that is, � = #� (�).
(a) Write a function that returns the Carter subgroups of a given group.
(b) If � is a solvable group, then there exists a unique (non-empty) conjugacy

class of Carter subgroups. Find the smallest non-solvable group satisfying this
property.

By the main result of [20], if ? ≥ 5 is a prime and � contains a self-normalizing
Sylow ?-subgroup, then � is solvable.

3.13. Prove the following theorem of Guralnick [19]. There exists a group� of order
= ≤ 200 such that [�,�] ≠ {[G, H] : G, H ∈ �} if and only if

= ∈ {96, 128, 144, 162, 168, 192}.

3.14. Prove the following extension of Guralnick’s theorem (Problem 3.13). There
exists a group � of order = < 1024 such that [�,�] ≠ {[G, H] : G, H ∈ �} if and
only if = is one of the following numbers: 96, 128, 144, 162, 168, 192, 216, 240,
256, 270, 288, 312, 320, 324, 336, 360, 378, 384, 400, 432, 448, 450, 456, 480, 486,
504, 512, 528, 540, 560, 576, 594, 600, 624, 640, 648, 672, 702, 704, 720, 729, 744,
750, 756, 768, 784, 792, 800, 810, 816, 832, 840, 864, 880, 882, 888, 896, 900, 912,
918, 936, 960, 972, 1000, 1008.

3.6 Problems 143

3.15. Let � be a finite group. Create functions to compute:
(a) The set of subnormal subgroups of �.
(b) The set of perfect subgroups of �.
(c) The set of quasisimple subgroups of �.
(d) The layer of �, that is, the subgroup generated by the subnormal quasisimple

subgroups of �.
(e) The generalized Fitting subgroup of �, that is, the subgroup generated by the

Fitting subgroup and the layer of �.

3.16. Determine all finite groups of order < 2000 whose composition factors are
isomorphic to �2, �3, �5 or A5.

3.17. Let c = {2, 3, 5}. Determine all c-separable groups of order < 1586.

3.18. Prove that the smallest Brauer pair corresponds to groups of order 28. To speed
up the calculations one can use the following fact: If (�, �) is a Brauer pair, then
�/[�,�] ' �/[�, �] and / (�) ' / (�). See [34, Lemma 2.6.3].

3.19. Describe the group algebras C[�] for � a finite group of order 28.

3.20. Construct the irreducible representations of D8 and SL2 (3).
3.21. Construct the irreducible representations of A4, S4 and A5.

3.22. Verify McKay’s Conjecture 3.1 for all sporadic simple groups.

3.23. Verify Isaacs–Navarro Conjecture 3.2 for Th and Co1.

3.24. Verify Wall’s Conjecture 3.10 for the Monster group.

3.25. A group � is said to be rational if all its characters are rational-valued.
(a) Write a function that returns true if a given group is rational or false otherwise.
(b) Find the rational groups of order ≤ 200.
(c) Prove that Sp6 (2) and Ω+8 (2) are rational simple groups.
(d) Are there rational sporadic simple groups?
By a theorem of W. Feit and G. M. Seitz [16], Sp6 (2) and Ω+8 (2) are the only
non-abelian rational finite simple groups.

3.26. Let � be the group of Example 2.72.
(a) Prove that 03 ∈ / (�) is an element of infinite order.
(b) Prove that / (�) ' Z × �2.
(c) Prove that [�,�] ' &8.

3.27. Find five quasisimple groups such that not every central element is a commu-
tator.

3.28. Let @ be a prime power and A > 0. Let 5 (G) = G@ be the Frobenius map of
F@A . Then 5 is an automorphism of order A which acts on the vector space + = F=@A
coordinate-wise. Construct the semidirect product + o 〈 5 〉.
3.29. Let � be a Sylow 3-subgroup of GL3 (3) and � be a non-abelian semidirect
product �3 o �9. Prove that � ; � and Q[�] ' Q[�] as Q-algebras.

References

1. Z. Arad and M. Herzog, editors. Products of conjugacy classes in groups, volume 1112 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985.

2. Y. G. Berkovich. On the number of subgroups of given order in a finite ?-group of exponent
?. Proc. Amer. Math. Soc., 109(4):875–879, 1990.

3. H. I. Blau. A fixed-point theorem for central elements in quasisimple groups. Proc. Amer.
Math. Soc., 122(1):79–84, 1994.

4. R. Brauer. Representations of finite groups. In Lectures on Modern Mathematics, Vol. I, pages
133–175. Wiley, New York, 1963.

5. M. Brennan and D. Machale. Variations on a Theme: �4 Definitely Has no Subgroup of Order
Six! Math. Mag., 73(1):36–40, 2000.

6. P. J. Cameron. Permutation groups, volume 45 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1999.

7. A. R. Camina and R. D. Camina. The influence of conjugacy class sizes on the structure of
finite groups: a survey. Asian-Eur. J. Math., 4(4):559–588, 2011.

8. R. D. Carmichael. Introduction to the theory of groups of finite order. Dover Publications,
Inc., New York, 1956.

9. T. Ceccherini-Silberstein and M. D’Adderio. Topics in groups and geometry—growth,
amenability, and random walks. Springer Monographs in Mathematics. Springer, Cham,
[2021] ©2021. With a foreword by Efim Zelmanov.

10. A. M. Cohen and D. E. Taylor. On a certain Lie algebra defined by a finite group. Amer. Math.
Monthly, 114(7):633–639, 2007.

11. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. ATLAS of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters
for simple groups, With computational assistance from J. G. Thackray.

12. H. S. M. Coxeter. Kaleidoscopes. Canadian Mathematical Society Series of Monographs and
Advanced Texts. John Wiley & Sons, Inc., New York, 1995. Selected writings of H. S. M.
Coxeter, Edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić
Weiss, A Wiley-Interscience Publication.

13. E. C. Dade. Answer to a question of R. Brauer. J. Algebra, 1:1–4, 1964.
14. P. de la Harpe. Topics in geometric group theory. Chicago Lectures inMathematics. University

of Chicago Press, Chicago, IL, 2000.
15. B. Eick and J. Müller. On ?-groups forming Brauer pairs. J. Algebra, 304(1):286–303, 2006.
16. W. Feit and G. M. Seitz. On finite rational groups and related topics. Illinois J. Math.,

33(1):103–131, 1989.
17. G. Gardam. A counterexample to the unit conjecture for group rings. Ann. of Math. (2),

194(3):967–979, 2021.
18. W. Gaschütz. Nichtabelsche ?-Gruppen besitzen äussere ?-Automorphismen. J. Algebra,

4:1–2, 1966.

145

146 References

19. R. M. Guralnick. Commutators and commutator subgroups. Adv. in Math., 45(3):319–330,
1982.

20. R. M. Guralnick, G. Malle, and G. Navarro. Self-normalizing Sylow subgroups. Proc. Amer.
Math. Soc., 132(4):973–979, 2004.

21. R. M. Guralnick, G. Malle, and P. H. Tiep. Products of conjugacy classes in finite and algebraic
simple groups. Adv. Math., 234:618–652, 2013.

22. K. Harada. Revisiting character theory of finite groups. Bull. Inst. Math. Acad. Sin. (N.S.),
13(4):383–395, 2018.

23. G. Havas and M. Vaughan-Lee. On counterexamples to the Hughes conjecture. J. Algebra,
322(3):791–801, 2009.

24. D. R. Hughes and J. G. Thompson. The � -problem and the structure of � -groups. Pacific J.
Math., 9:1097–1101, 1959.

25. I. M. Isaacs. Characters of solvable and symplectic groups. Amer. J. Math., 95:594–635, 1973.
26. I. M. Isaacs. Character theory of finite groups. AMS Chelsea Publishing, Providence, RI,

2006. Corrected reprint of the 1976 original [Academic Press, New York; MR0460423].
27. I. M. Isaacs. Finite group theory, volume 92 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, 2008.
28. I. M. Isaacs and G. Navarro. New refinements of the McKay conjecture for arbitrary finite

groups. Ann. of Math. (2), 156(1):333–344, 2002.
29. S. Kionke and J. Raimbault. On geometric aspects of diffuse groups. Doc. Math., 21:873–915,

2016. With an appendix by Nathan Dunfield.
30. J. C. Lagarias. The 3G + 1 problem and its generalizations. Amer. Math. Monthly, 92(1):3–23,

1985.
31. T. Y. Lam and D. B. Leep. Combinatorial structure on the automorphism group of (6.

Exposition. Math., 11(4):289–308, 1993.
32. M. W. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep. The Ore conjecture. J. Eur. Math.

Soc. (JEMS), 12(4):939–1008, 2010.
33. M.W. Liebeck, L. Pyber, and A. Shalev. On a conjecture of G. E.Wall. J. Algebra, 317(1):184–

197, 2007.
34. K. Lux and H. Pahlings. Representations of groups, volume 124 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 2010. A computational
approach.

35. D. MacHale. Minimum counterexamples in group theory. Math. Mag., 54(1):23–28, 1981.
36. G. Malle. The proof of Ore’s conjecture (after Ellers-Gordeev and Liebeck-O’Brien-Shalev-

Tiep). Astérisque, 361(361):Exp. No. 1069, ix, 325–348, 2014.
37. G. Malle and B. Späth. Characters of odd degree. Ann. of Math. (2), 184(3):869–908, 2016.
38. J. McKay. A new invariant for finite simple groups. Notices Amer. Math. Soc., 18(2):397,

1971.
39. C. F. Miller, III and P. E. Schupp. Some presentations of the trivial group. In Groups,

languages and geometry (South Hadley, MA, 1998), volume 250 of Contemp. Math., pages
113–115. Amer. Math. Soc., Providence, RI, 1999.

40. R. F. Morse. On the application of computational group theory to the theory of groups. In
Computational group theory and the theory of groups, volume 470 of Contemp. Math., pages
1–19. Amer. Math. Soc., Providence, RI, 2008.

41. G. Navarro. The set of conjugacy class sizes of a finite group does not determine its solvability.
J. Algebra, 411:47–49, 2014.

42. G. Navarro. Character theory and the McKay conjecture, volume 175 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 2018.

43. G. Navarro. Problems on characters: solvable groups. Publ. Mat., 67(1):173–198, 2023.
44. P. S. Novikov. Ob algoritmičeskoı̆ nerazrešimosti problemy toždestva slov v teorii grupp. Izdat.

Akad. Nauk SSSR, Moscow, 1955. Trudy Mat. Inst. Steklov. no. 44.
45. D. S. Passman. The algebraic structure of group rings. Robert E. Krieger Publishing Co., Inc.,

Melbourne, FL, 1985. Reprint of the 1977 original.
46. S. D. Promislow. A simple example of a torsion-free, nonunique product group. Bull. London

Math. Soc., 20(4):302–304, 1988.

References 147

47. D. Quillen. Homotopy properties of the poset of nontrivial ?-subgroups of a group. Adv. in
Math., 28(2):101–128, 1978.

48. J. J. Rotman. An introduction to the theory of groups, volume 148 of Graduate Texts in
Mathematics. Springer-Verlag, New York, fourth edition, 1995.

49. J.-P. Serre. Linear representations of finite groups. Graduate Texts in Mathematics, Vol. 42.
Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by
Leonard L. Scott.

50. J.-P. Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980
English translation.

51. J. Stillwell. The word problem and the isomorphism problem for groups. Bull. Amer. Math.
Soc. (N.S.), 6(1):33–56, 1982.

52. J. Szeṕ. Sui gruppi fattorizzabili non semplici. Rend. Mat. e Appl. (5), 22:245–252, 1963.
53. J. Szép. Sui gruppi fattorizzabili. Rend. Sem. Mat. Fis. Milano, 38:228–230, 1968.
54. G. E. Wall. Some applications of the Eulerian functions of a finite group. J. Austral. Math.

Soc., 2:35–59, 1961/1962.
55. R. A. Wilson. The McKay conjecture is true for the sporadic simple groups. J. Algebra,

207(1):294–305, 1998.

Index

A4, 49
S=, 27
?-core of a finite group, 129
?-rank, 130
AllSubgroups, 52
IsNormal, 52
IsSubgroup, 52
StructureDescription, 52

Abbott, R., 111
Arad, Z., 120, 122, 123
Arad–Herzog conjecture, 123
Atlas of finite group representations, 111
Automorphism group, 71

Baer trick, 107
Baer, R., 107
Berkovich’s conjecture, 127
Berkovich’s theorem, 103
Berkovich, Y., 103, 127
Besche, H., 98
Blau, H., 104
Bovdi, V., 58
Brauer pair, 143
Brauer’s pairs, 115
Brauer, R., 101, 102, 110, 115
Bray, J., 111
Breaking lines, 4
Breuer, T., 111
Burnside group, 88, 95
Burnside’s problem, 88

Carter subgroup, 142
Cayley’s theorem, 107
Center, 54
Centralizer, 55
Chermak–Delgado subgroup, 94

Classical groups, 60
Cohen, A. M., 138
Collatz conjecture, 11
Comments, 4
Commutator, 54
Commuting probability, 106
Conditionals, 8
Conjecture
Schreier, 72

Conjugacy class, 55
Conway, J., 40
Coxeter, H., 86
Cyclotomic numbers, 26

Dabbaghian, V., 109
Dade, E., 115
Direct product, 73
Dixon, J. C., 106

Eick, B., 98, 115
Eigenvalue, 42
Eigenvector, 42

Feit, W., 143
Fibonacci sequence, 10, 12, 33
Finite fields, 24
Fisman, E., 122
Floating–point numbers, 23
Fractran programming language, 40
Free group, 84
Functions, 9

Galois fields, 24
Gardam’s theorem, 140
Gardam, G., 138
Gaschütz, W., 127
Gaussian rationals, 135

149

150 Index

Group
abelian, 47
alternating, 49
covering, 93
cyclic, 46
dihedral, 48
elementary abelian, 48
factorization in terms of generators, 50
generalized quaternion, 53
homomorphism, 69
normal subgroup, 52
perfect, 54
primitive, 105
quasisimple, 103
quotient, 52
symmetric, 49
trivial, 46

Group ring, 132
augmentation ideal, 132
idempotent, 134
Jacobson radical, 134
Trivial unit, 135

Guralnick, R., 100, 142

Harada’s conjecture, 126
Harada, K., 126
Help, 3
Herzog, M., 120, 123
Hilbert matrix, 41
Hughes subgroup, 125
Hughes’ conjecture, 125
Hughes, D. R., 125

If–then(–else), 9
Index, 52
Inline functions, 9
Inner automorphisms, 71
Integers, 5
Isaacs, M., 116, 118
Isaacs–Navarro conjecture, 119, 143
Iterators, 58
Ito, N., 119

Kaplanksy’s conjecture, 138
Konovalov, O., 58
Kronecker product, 42
Kronecker, L., 42

Lam, T., 99
Leep, D., 99
Lie algebra, 136
Liebeck, M., 119, 128
Linton, S., 111
Lists, 15

make a copy, 18
Local variables, 13
Log, 4
Logical operators, 8
Look and say sequence, 40
Loops, 12

Malle, G., 117, 121
Manual, 3
Mathieu groups, 51
Matrix
basic operations, 30
determinant of a, 34
diagonal, 31
null, 31
number of columns, 29
number of rows, 29
over a finite field, 32
rank of a, 34
submatrices of a, 31
trace of a, 34

McKay’s conjecture, 116, 143
McKay, J., 116
Measuring time, 23
Müller, J., 115

Navarro, G., 101, 102, 118
Nickerson, S., 111
Norton, S., 111

O’Brien, E., 98, 119
Order
of elements, 51

Ore’s conjecture, 119
Ore, O., 119

Package
AtlasRep, 111, 113
CTblLib, 111, 117, 121
Laguna, 58, 137
Repsn, 109

Parker, R., 111
Permutation, 26
matrices, 30
sign of a, 29

Plesken Lie algebra, 137
Plesken, W., 137
Polynomials, 34
Promislow group, 138, 139
Pyber, L., 128

Quillen’s conjecture, 130
Quillen, D., 130

Index 151

Ranges, 20
Rational groups, 143
Rational numbers, 5
Records, 22
Recursive functions, 10, 11
Rossmanith, R., 58
Run times, 23

Sadofschi Costa, I., 106
Schneider, C., 58
Schottenfels’ theorem, 84
Schreier’s conjecture, 72
Schreier, O., 72
Schur covering, 104
Seitz, G. M., 143
Sets, 21
Shalev, A., 119, 128
Skrzipczyk, E., 115
Somos sequence, 39
Späth, B., 117
Strings (of characters), 14
Subgroups, 52
Suleiman, I., 111
Sylow subgroups, 62
Szep’s conjecture, 122

Szep, J., 122

Taylor, D. E., 138
Teaching mode, 47
Tensor product

of matrices, 42
Thompson’s conjecture, 120
Thompson, J. G., 120
Tiep, P., 119
Tripp, J., 111

Variables, 4, 7
local, 13

Vector spaces, 36
Vectors

basic operations, 30
von Dyck group, 87

Wall’s conjecture, 128, 143
Wall, G. E., 128
Walsh matrix, 42
Walsh, P., 111
Wedderburn decomposition, 135
Wilson, R., 111, 118
Word problem, 88

	Part I Basic theory
	First steps
	The very first steps
	Basic arithmetic
	Basic programming
	Objects and variables
	Conditionals
	Functions
	Loops
	Strings
	Lists
	Ranges
	Sets
	Records

	Other numbers
	Floating–point numbers
	Finite fields
	Cyclotomic numbers

	Permutations
	Matrices
	Polynomials
	Vector spaces
	Problems

	Basic group theory
	Basic constructions
	Group actions
	Homomorphisms
	Semidirect products
	Solvable groups
	Finitely presented groups
	Problems

	Advanced group theory
	Group databases
	Representations
	Some conjectures
	McKay's conjecture
	Isaacs–Navarro conjecture
	Ore's conjecture
	Thompson's conjecture
	Szep's conjecture
	Arad–Herzog conjecture
	Hughes' conjecture
	Harada's conjecture
	Berkovich's conjecture
	Wall's conjecture
	Quillen's conjecture

	Group rings
	Kaplansky's unit conjecture
	Problems

	References
	Index

