
Mini-course on GAP – Lecture 1

Leandro Vendramin

Vrije Universiteit Brussel

March 2023

1 / 52

GAP is a system for computational discrete algebra. It is freely
available here: http://www.gap-system.org/

2 / 52

What are we going to do here?
Outline:
I Arithmetics
I Basic programming
I Linear algebra
I Elementary group theory
I Advanced group theory, representation theory

3 / 52

Immediately after running GAP we will see some information related
to the distribution we have installed. We will also see that GAP is
ready:
gap >

To close GAP one uses quit:
gap > quit;

Every command should end with the symbol ; (semicolon). The
symbol ;; (double semicolon) also is used to end a command but it
means that no screen output will be produced.
gap > 2+5;;
gap > 2+5;
7

4 / 52

To see information related commands or functions, tutorials and
manuals one uses the symbol ? (question mark). Here we have
some examples:
gap > ? tutorial
gap > ?sets
gap > ?help
gap > ? permutations
gap > ? Eigenvalues
gap > ? CyclicGroup
gap > ? FreeGroup
gap > ? SylowSubgroup

5 / 52

To make the command line more readable one could use the symbol
\ (backslash):
gap > # Let us compute 1+2+3
gap > 1\
> +2\
> +3;
6

6 / 52

The function LogTo saves the subsequent interaction to be logged
to a file. It means that everything you see on your terminal will also
appear in this file.
gap > # Save the output to the file mylog
gap > LogTo("mylog");

This is extremely useful! When the function LogTo is called with no
parameters GAP will stop writing a log file.
gap > # Stop saving the output
gap > LogTo ();

7 / 52

One can do basic arithmetic operations with rational numbers:
gap > 1+1;
2
gap > 2*3;
6
gap > 8/2;
4
gap > (1/3)+(2/5);
11/15
gap > 2*(-6)+4;
-8
gap > NumeratorRat (3/5);
3
gap > DenominatorRat (3/5);
5

8 / 52

One uses mod to obtain the remainder after division of a by m, where
a is the dividend and m is the divisor.
gap > 6 mod 4;
2
gap > -6 mod 5;
4

9 / 52

There are several functions that one can use for specific purposes.
For example Factors returns the factorization of an integer and
IsPrime detects whether an integer is prime or not.
gap > Factors (10);
[2, 5]
gap > Factors (18);
[2, 3, 3]
gap > IsPrime (1800);
false
gap > Factors (37);
[37]
gap > IsPrime (37);
true

10 / 52

Other useful functions: Sqrt computes square roots, Factorial
computes the factorial of a positive integer, Gcd computes the great-
est common divisor of a finite list of integers, Lcm computes the least
commom multiple.
gap > Sqrt (25);
5
gap > Factorial (15);
1307674368000
gap > Gcd (10 ,4);
2
gap > Lcm (10 ,4 ,2 ,6);
60

11 / 52

We can also work in cyclotomic fields. CF creates a cyclotomic
field. To create primitive roots of 1 one uses the function E. More
precisely: E(n) returns e2πi/n.
gap > E(6) in Rationals ;
false
gap > E(6) in Cyclotomics ;
true
gap > E(3) in CF (3);
true
gap > E(3) in CF (4);
false
gap > E (3)^2+ E(3);
-1
gap > E(6);
-E (3)^2

Tipically, cyclotomic numbers will be represented as rational linear
combinations of primitive roots of 1.

12 / 52

Inverse (resp. AdditiveInverse) returns the multiplicative (resp.
additive) inverse of an element.
gap > AdditiveInverse (2/3);
-2/3
gap > Inverse (2/3);
3/2
gap > AdditiveInverse (E(7));
-E(7)
gap > Inverse (E(7));
E(7)^6

13 / 52

Exercise: Conway FRACTRAN language

FRACTRAN is a programming language invented by J. Conway. A
FRACTRAN program is simply an ordered list of positive rationals
together with an initial positive integer input n. The program is run
by updating the integer n as follows:
I For the first rational f in the list for which nf ∈ Z, replace n

by nf .
I Repeat this rule until no rational in the list produces an

integer when multiplied by n, then stop.
Write an implementation of the FRACTRAN language.

14 / 52

Starting with n = 2, the program

17
91 ,

78
85 ,

19
51 ,

23
38 ,

29
33 ,

77
29 ,

95
23 ,

77
19 ,

1
17 ,

11
13 ,

13
11 ,

15
2 ,

1
7 , 55

produces the sequence

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770 . . .

In 1987, J. Conway proved that this sequence contains the set

{2p : p prime}.

See https://oeis.org/A007542 for more information.

15 / 52

https://oeis.org/A007542

Exercise: Conway “look and say” sequence

The first terms of Conway’s “look and say” sequence are
1
11
21
1211
111221
312211

After guessing how each term is computed, write a script to create
the first terms of the sequence.

16 / 52

To solve these two exercises we need some basic programming: con-
ditionals, functions, strings, lists, ranges, sets, records, loops. . .
We will see these things later!

17 / 52

Let us review some basic mathematical objects in GAP :
I Permutations.
I Finite fields.
I Matrices.

18 / 52

Permutations

A permutation in n letters is a bijective map

σ : {1, . . . , n} → {1, . . . , n}.

For example, the permutation
(1234

3124
)
is the bijective map such that

1 7→ 3, 2 7→ 1, 3 7→ 2 and 4 7→ 4.

Usually one writes a permutation as a product of disjoint cycles. For
example:(

1234
2413

)
= (1243),

(
12345
21435

)
= (12)(34)(5) = (12)(34).

The permutation
(12345

21435
)

= (12)(34) in GAP is (1,2)(3,4).

19 / 52

Permutations

The function IsPerm checks whether some object is a permutation.
Let us see some examples:
gap > IsPerm ((1 ,2)(3 ,4));
true
gap > (1 ,2)(3 ,4)(5)=(1 ,2)(3 ,4);
true
gap > (1 ,2)(3 ,4)=(3 ,4)(2 ,1);
true
gap > IsPerm (25);
false
gap > IsPerm ([1 ,2 ,3 ,4]);
false

20 / 52

Permutations

The image of an element i under the natural right action of a per-
mutation p is i^p. The preimage of the element i under p can be
obtained with i/p. In the following example we compute the image
of 1 and the preimage of 3 by the permutation (123):
gap > 2^(1 ,2 ,3);
3
gap > 2/(1 ,2 ,3);
1

21 / 52

Permutations

Composition of permutations will be performed from left to right.
For example

(123)(234) = (13)(24)

as the following code shows:
gap > (1 ,2 ,3) * (2 ,3 ,4);
(1 ,3)(2 ,4)

To obtain the inverse of a permutation one uses Inverse:
gap > Inverse ((1 ,2 ,3));
(1 ,3 ,2)
gap > (1 ,2 ,3)^(-1);
(1 ,3 ,2)

22 / 52

Permutations

Let σ be a permutation written as a product of disjoint cycles. The
function ListPerm returns a list containing σ(i) at position i .
gap > # The permutation (12) in two letters
gap > ListPerm ((1 ,2));
[2, 1]
gap > # The permutation (12) in four letters
gap > ListPerm ((1 ,2) , 4);
[2, 1, 3, 4]
gap > ListPerm ((1 ,2 ,3)(4 ,5));
[2, 3, 1, 5, 4]
gap > ListPerm ((1 ,3));
[3, 2, 1]

23 / 52

Permutations

Conversely, any list of this type can be transformed into a permuta-
tion with the function PermList.
gap > PermList ([1 ,2 ,3]);
()
gap > PermList ([2 ,1]);
(1 ,2)

24 / 52

Permutations

The sign of a permutation σ is the number (−1)k , where one writes
σ = τ1 · · · τk as a product of transpositions. To compute the sign
of a permutation one uses the function SignPerm.
gap > SignPerm (());
1
gap > SignPerm ((1 ,2));
-1
gap > SignPerm ((1 ,2 ,3 ,4 ,5));
1
gap > SignPerm ((1 ,2)(3 ,4 ,5));
-1
gap > SignPerm ((1 ,2)(3 ,4));
1

25 / 52

An exercise on permutations

For a given positive integer n construct the permutation σ ∈ Symn
given by σ(j) = n − j + 1, Write σ as a product of disjoint cycles
and compute its sign.

26 / 52

Finite fields

To create the finite field of pn elements (here p is a prime number)
we use the function GF. The characteristic of a field can be obtained
with Characteristic.
gap > GF (2);
GF (2)
gap > GF (9);
GF (3^2)
gap > Characteristic (Rationals);
0
gap > Characteristic (CF (3));
0
gap > Characteristic (CF (4));
0
gap > Characteristic (GF (2));
2
gap > Characteristic (GF (9));
3

27 / 52

Finite fields
Let p be a prime number and let F denote the field with q = pn

elements, for some n ∈ N. The subset

{x ∈ F : x 6= 0}

is a cyclic group of size q − 1; say generated by ζ. Then

F = {0, ζ, ζ2, . . . , ζq−1},

so each non-zero element of F is then a power of ζ.
gap > Size(GF (4));
4
gap > Elements (GF (4));
[0*Z(2), Z(2)^0 , Z(2^2) , Z (2^2)^2]
gap > Z(4);
Z(2^2)
gap > Inverse (Z(4));
Z (2^2)^2

28 / 52

Finite fields

In GAP each non-zero element of the finite field GF(q) will be a
power of the generator Z(q). The zero of GF(q) will be 0*Z(q)
or equivalently Zero(GF(q)). One(GF(q)) will be the multiplicative
neutral element of GF(q).
gap > Zero(GF (4));
0*Z(2)
gap > 0 in GF (4);
false
gap > Zero(Rationals);
0
gap > One(GF (4));
Z(2)^0
gap > 1 in GF (4);
false
gap > One(Rationals);
1

29 / 52

Finite fields

To recognize elements in finite fields with a prime number of ele-
ments one uses the function Int.
gap > Elements (GF (5));
[0*Z(5), Z(5)^0 , Z(5), Z(5)^2 , Z(5)^3]
gap > Int(Z (5)^0);
1
gap > Int(Z (5)^1);
2
gap > Int(Z (5)^2);
4
gap > Int(Z (5)^3);
3

30 / 52

An exercise on permutation polynomials

Prove that the map

f : Z/8→ Z/8, f (x) = 2x2 + x ,

defines a permutation on the ring Z/8. Can you write this permu-
tation as a product of disjoint cycles?

31 / 52

Matrices

For us a matrix will be just a rectangular array of numbers. The size
of a matrix can be obtained with DimensionsMat. Sometimes (for
example if one has an integer matrix) the function Display shows
matrices in a nice way.
gap > m := [[1 ,2 ,3] ,[4 ,5 ,6]];;
gap > Display (m);
[[1, 2, 3],

[4, 5, 6]]
gap > m [1][1];
1
gap > m [1][2];
2
gap > m [2][1];
4
gap > DimensionsMat (m);
[2, 3]

32 / 52

Matrices

Let v = (1, 2, 3) and w = (0, 5,−7) be row vectors of Q3. Let us
check that −5v = (−5,−10,−15) and 2v − w = (2,−1, 13).
gap > v := [1 ,2 ,3];;
gap > w := [0 ,5 , -7];;
gap > IsRowVector (v);
true
gap > IsRowVector (w);
true
gap > -5*v;
[-5, -10, -15]
gap > 2*v-w;
[2, -1, 13]

We also check that the inner product between v and w is −11:
gap > v*w;
-11

33 / 52

A very simple exercise with matrices

Let

A =

1 1 1
0 1 1
0 0 1

 , B =
(
1 4 7
2 5 8

)
, C =

1 2
6 1
0 2

 .
Compute A3, BC , CB, A + CB and 2A− 5CB.

34 / 52

Matrices

To construct a null matrix one uses the function NullMat. The
identity is constructed with the function IdentityMat. To construct
diagonal matrices one uses DiagonalMat.
gap > Display (NullMat (2 ,3));
[[0, 0, 0],

[0, 0, 0]]
gap > Display (IdentityMat (3));
[[1, 0, 0],

[0, 1, 0],
[0, 0, 1]]

gap > Display (DiagonalMat ([1 ,2]));
[[1, 0],

[0, 2]]

35 / 52

Matrices

We know that matrix[i][j] returns the (i , j)-element of our matrix.
To extract submatrices from a matrix one uses

matrix{rows}{columns}

like in the following example:
gap > m := [\
> [1, 2, 3, 4, 5],\
> [6, 7, 8, 9, 3],\
> [3, 2, 1, 2, 4],\
> [7, 5, 3, 0, 0],\
> [0, 0, 0, 0, 1]];
gap > m {[1..3]}{[1..3]};
[[1, 2, 3], [6, 7, 8], [3, 2, 1]]
gap > m{[2 ,4 ,5]}{[1 ,3]};
[[6, 8], [7, 3], [0, 0]]

36 / 52

Matrices

It is possible to work with matrices with coefficients in arbitrary
rings. Let us start working with matrices over the finite field of five
elements:
gap > m := [[1 ,2 ,3] ,[3 ,2 ,1] ,[0 ,0 ,2]]* One(GF (5));
[[Z(5)^0 , Z(5), Z(5)^3],

[Z(5)^3 , Z(5), Z(5)^0],
[0*Z(5), 0*Z(5), Z(5)]]

gap > Display (m);
1 2 3
3 2 1
. . 2

37 / 52

Matrices

Now let us work with 3 × 3 matrices with coefficients in the ring
Z/4. Let us compute the identity of M3(Z/4):
gap > m := IdentityMat (3, ZmodnZ (4));;
gap > Display (m);
matrix over Integers mod 4:
[[1, 0, 0],

[0, 1, 0],
[0, 0, 1]]

38 / 52

Matrices

One uses the function Inverse to compute the inverse of an invert-
ible (square) matrix. This function returns fail if the matrix is not
invertible.
gap > m := [[1, -2, -1], [0, 1, 0], [1, -1, 0]];;
gap > Display (Inverse (m));
[[0, 1, 1],

[0, 1, 0],
[-1, -1, 1]]

gap > Inverse ([[1 ,0] ,[2 ,0]]);
fail

IsIdentityMat returns either true if the argument is the identity
matrix or false otherwise.
gap > IsIdentityMat (m* Inverse (m));
true

39 / 52

Matrices

We use TransposedMat to compute the transpose of a matrix:
gap > m := [[1, -2, -1], [0, 1, 0], [1, -1, 0]];;
gap > Display (TransposedMat (m)*m);
[[2, -3, -1],

[-3, 6, 2],
[-1, 2, 1]]

40 / 52

A tricky exercise with matrices

Compute the eigenvalues and eigenvectors of the matrix

A =

1 2 3
4 5 6
6 7 8

 ∈ Q3×3.

WARNING:
The function Eigenvectors returns generators of the eigenspaces,
where v 6= 0 is an eigenvector of A with eigenvalue λ if and only if
vA = λv .

41 / 52

Let us start with basic GAP programming.
Outline:
I Objects and variables
I Conditionals
I Functions
I Strings
I Lists
I Ranges
I Sets
I Loops

42 / 52

Objects and variables

An object is something that we can assign to a variable. So an object
could be either a number, a string, a group, a field, an element of a
group, a group homomorphism, a ring, a matrix, a vector space...

43 / 52

Objects and variables

To assign an object to a variable one uses the operator := as the
following example shows:
gap > p := 32;;
gap > p;
32
gap > p = 32;
true
gap > p := p+1;;
gap > p;
33
gap > p = 32;
false

WARNING:
Don’t forget that the symbols = (conditional) and := (assignment
operator) are different!

44 / 52

Objects and variables

What if I forgot to assign the result of a calculation for further use?
We can do the following:
gap > 2*(5+1) -6;
6
gap > n := last;
6

One also has last2 and last3.

45 / 52

Conditionals
There are three very important operators: not, and, or. We also
have comparison operators; for example the expression x<>y returns
true if x and y are different, and false otherwise.
gap > x := 20;; y := 10;;
gap > x <> y;
true
gap > x > y;
true
gap > (x > 0) or (x < y);
true
gap > (x > 0) and (x < y);
false
gap > (2*y < x);
false
gap > (2*y <= x);
true
gap > not (x < y);
true

46 / 52

Conditionals

The if statement allows one to execute statements depending on
the value of some boolean expression.
gap > n := 10;;
gap > if n mod 2 = 0 then
> n := n/2;
> else
> n := (n +1)/2;
> fi;
gap > n;
5

Better examples will appear soon, we need to use functions!

47 / 52

Functions

There are two ways of constructing functions. For example, to con-
struct the map x 7→ x2 either we use the one-line definition
gap > square := x->x^2;
function (x) ... end

or the classical
gap > square := function (x)
> return x^2;
> end;
function (x) ... end

In both cases we will obtain the same result!

48 / 52

Functions

One can also define functions with no arguments.
gap > hi := function ()
> Display ("Hello world");
> end;
function () ... end
gap > hi ();
Hello world

49 / 52

Functions

Let us write a function to compute the map

f : n 7→

n3 si n ≡ 0 mod 3,
n5 si n ≡ 1 mod 3,
0 otherwise .

50 / 52

Functions

Here is the code and some experiments:
gap > f := function (n)
> if n mod 3 = 0 then
> return n^3;
> elif n mod 3 = 1 then
> return n^5;
> else
> return 0;
> fi;
> end;
function (n) ... end
gap > f(10);
100000
gap > f(5);
0
gap > f(4);
1024

51 / 52

Functions

The Fibonacci sequence fn is defined as f1 = f2 = 1 and

fn+1 = fn + fn−1

for n ≥ 2. The following function computes Fibonacci numbers:
gap > fibonacci := function (n)
> if n = 1 or n = 2 then
> return 1;
> else
> return fibonacci (n -1)+ fibonacci (n -2);
> fi;
> end;
function (n) ... end
gap > fibonacci (10);
55

Question: Can you compute f100 with this method?

52 / 52

