Mini-course on GAP - Lecture 1

Leandro Vendramin

Vrije Universiteit Brussel

March 2023

GAP is a system for computational discrete algebra. It is freely available here: http://www.gap-system.org/

What are we going to do here?
Outline:

- Arithmetics
- Basic programming
- Linear algebra
- Elementary group theory
- Advanced group theory, representation theory

Immediately after running GAP we will see some information related to the distribution we have installed. We will also see that GAP is ready:
gap >
To close GAP one uses quit:
gap> quit;
Every command should end with the symbol ; (semicolon). The symbol ; ; (double semicolon) also is used to end a command but it means that no screen output will be produced.

```
gap> 2+5;;
gap> 2+5;
7
```

To see information related commands or functions, tutorials and manuals one uses the symbol ? (question mark). Here we have some examples:

```
gap> ?tutorial
gap> ?sets
gap> ?help
gap> ?permutations
gap> ?Eigenvalues
gap> ?CyclicGroup
gap> ?FreeGroup
gap> ?SylowSubgroup
```

To make the command line more readable one could use the symbol \backslash (backslash):

```
gap> # Let us compute 1+2+3
gap> 1\
> +2\
> +3;
6
```

The function LogTo saves the subsequent interaction to be logged to a file. It means that everything you see on your terminal will also appear in this file.
gap> \# Save the output to the file mylog gap> LogTo("mylog");

This is extremely useful! When the function LogTo is called with no parameters GAP will stop writing a log file.

```
gap> # Stop saving the output
gap> LogTo();
```

One can do basic arithmetic operations with rational numbers:

```
gap> 1+1;
2
gap> 2*3;
6
gap> 8/2;
4
gap> (1/3)+(2/5);
11/15
gap> 2*(-6)+4;
-8
gap> NumeratorRat(3/5);
3
gap> DenominatorRat(3/5);
5
```

One uses mod to obtain the remainder after division of a by m, where a is the dividend and m is the divisor.

```
gap> 6 mod 4;
2
gap> -6 mod 5;
4
```

There are several functions that one can use for specific purposes. For example Factors returns the factorization of an integer and IsPrime detects whether an integer is prime or not.

```
gap> Factors(10);
[ 2, 5 ]
gap> Factors(18);
[ 2, 3, 3 ]
gap> IsPrime(1800);
false
gap> Factors(37);
[ 37 ]
gap> IsPrime(37);
true
```

Other useful functions: Sqrt computes square roots, Factorial computes the factorial of a positive integer, Gcd computes the greatest common divisor of a finite list of integers, Lcm computes the least commom multiple.

```
gap> Sqrt(25);
5
gap> Factorial(15);
1307674368000
gap> Gcd(10,4);
2
gap> Lcm(10,4,2,6);
6 0
```

We can also work in cyclotomic fields. CF creates a cyclotomic field. To create primitive roots of 1 one uses the function E. More precisely: $\mathrm{E}(\mathrm{n})$ returns $e^{2 \pi i / n}$.

```
gap> E(6) in Rationals;
false
gap> E(6) in Cyclotomics;
true
gap> E(3) in CF(3);
true
gap> E(3) in CF(4);
false
gap> E(3) ~ 2+E(3);
-1
gap> E(6);
-E(3) ^2
```

Tipically, cyclotomic numbers will be represented as rational linear combinations of primitive roots of 1 .

Inverse (resp. AdditiveInverse) returns the multiplicative (resp. additive) inverse of an element.
gap> AdditiveInverse (2/3);
$-2 / 3$
gap> Inverse(2/3);
3/2
gap> AdditiveInverse(E(7));
-E (7)
gap> Inverse(E(7));
E(7)~6

Exercise: Conway FRACTRAN language

FRACTRAN is a programming language invented by J. Conway. A FRACTRAN program is simply an ordered list of positive rationals together with an initial positive integer input n. The program is run by updating the integer n as follows:

- For the first rational f in the list for which $n f \in \mathbb{Z}$, replace n by $n f$.
- Repeat this rule until no rational in the list produces an integer when multiplied by n, then stop.
Write an implementation of the FRACTRAN language.

Starting with $n=2$, the program

$$
\frac{17}{91}, \frac{78}{85}, \frac{19}{51}, \frac{23}{38}, \frac{29}{33}, \frac{77}{29}, \frac{95}{23}, \frac{77}{19}, \frac{1}{17}, \frac{11}{13}, \frac{13}{11}, \frac{15}{2}, \frac{1}{7}, 55
$$

produces the sequence
$2,15,825,725,1925,2275,425,390,330,290,770 \ldots$
In 1987, J. Conway proved that this sequence contains the set

$$
\left\{2^{p}: p \text { prime }\right\}
$$

See https://oeis.org/A007542 for more information.

Exercise: Conway "look and say" sequence

The first terms of Conway's "look and say" sequence are 1
11
21
1211
111221
312211
After guessing how each term is computed, write a script to create the first terms of the sequence.

To solve these two exercises we need some basic programming: conditionals, functions, strings, lists, ranges, sets, records, loops... We will see these things later!

Let us review some basic mathematical objects in GAP :

- Permutations.
- Finite fields.
- Matrices.

Permutations

A permutation in n letters is a bijective map

$$
\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}
$$

For example, the permutation $\binom{1234}{3124}$ is the bijective map such that $1 \mapsto 3,2 \mapsto 1,3 \mapsto 2$ and $4 \mapsto 4$.

Usually one writes a permutation as a product of disjoint cycles. For example:

$$
\binom{1234}{2413}=(1243), \quad\binom{12345}{21435}=(12)(34)(5)=(12)(34) .
$$

The permutation $\binom{12345}{21435}=(12)(34)$ in GAP is $(1,2)(3,4)$.

Permutations

The function IsPerm checks whether some object is a permutation. Let us see some examples:

```
gap> IsPerm((1,2)(3,4));
true
gap> (1, 2)(3,4)(5)=(1, 2)(3,4);
true
gap> (1, 2)(3,4)=(3,4)(2, 1);
true
gap> IsPerm(25);
false
gap> IsPerm([1, 2, 3,4]);
false
```


Permutations

The image of an element i under the natural right action of a permutation p is $i^{\wedge} p$. The preimage of the element i under p can be obtained with i / p. In the following example we compute the image of 1 and the preimage of 3 by the permutation (123):

```
gap> 2^(1,2,3);
3
gap> 2/(1,2,3);
1
```


Permutations

Composition of permutations will be performed from left to right. For example

$$
(123)(234)=(13)(24)
$$

as the following code shows:
gap> $(1,2,3)$ * (2, 3, 4); $(1,3)(2,4)$

To obtain the inverse of a permutation one uses Inverse:

```
gap> Inverse((1,2,3));
```

$(1,3,2)$
gap> (1, 2,3) (-1);
$(1,3,2)$

Permutations

Let σ be a permutation written as a product of disjoint cycles. The function ListPerm returns a list containing $\sigma(i)$ at position i.

```
gap> # The permutation (12) in two letters
gap> ListPerm((1,2));
[ 2, 1 ]
gap> # The permutation (12) in four letters
gap> ListPerm((1,2), 4);
[ 2, 1, 3, 4 ]
gap> ListPerm((1,2,3)(4,5));
[ 2, 3, 1, 5, 4 ]
gap> ListPerm((1,3));
[ 3, 2, 1 ]
```


Permutations

Conversely, any list of this type can be transformed into a permutation with the function PermList.
gap> PermList([1, 2,3]);
()
gap> PermList([2,1]);
$(1,2)$

Permutations

The sign of a permutation σ is the number $(-1)^{k}$, where one writes $\sigma=\tau_{1} \cdots \tau_{k}$ as a product of transpositions. To compute the sign of a permutation one uses the function SignPerm.

```
gap> SignPerm(());
1
gap> SignPerm((1,2));
-1
gap> SignPerm((1,2,3,4,5));
1
gap> SignPerm((1,2)(3,4,5));
-1
gap> SignPerm((1, 2)(3,4));
1
```


An exercise on permutations

For a given positive integer n construct the permutation $\sigma \in \operatorname{Sym}_{n}$ given by $\sigma(j)=n-j+1$, Write σ as a product of disjoint cycles and compute its sign.

Finite fields

To create the finite field of p^{n} elements (here p is a prime number) we use the function GF. The characteristic of a field can be obtained with Characteristic.

```
gap> GF(2);
GF(2)
gap> GF(9);
GF (3^2)
gap> Characteristic(Rationals);
0
gap> Characteristic(CF(3));
O
gap> Characteristic(CF(4));
O
gap> Characteristic(GF(2));
2
gap> Characteristic(GF(9));
3
```


Finite fields

Let p be a prime number and let F denote the field with $q=p^{n}$ elements, for some $n \in \mathbb{N}$. The subset

$$
\{x \in F: x \neq 0\}
$$

is a cyclic group of size $q-1$; say generated by ζ. Then

$$
F=\left\{0, \zeta, \zeta^{2}, \ldots, \zeta^{q-1}\right\}
$$

so each non-zero element of F is then a power of ζ.

```
gap> Size(GF(4));
4
gap> Elements(GF(4));
[ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2 ]
gap> Z(4);
Z(2^2)
gap> Inverse(Z(4));
Z(2^2)^2
```


Finite fields

In GAP each non-zero element of the finite field GF(q) will be a power of the generator $\mathrm{Z}(\mathrm{q})$. The zero of $\mathrm{GF}(\mathrm{q})$ will be $0 * \mathrm{Z}(\mathrm{q})$ or equivalently $\operatorname{Zero}(\mathrm{GF}(\mathrm{q}))$. One (GF(q)) will be the multiplicative neutral element of GF (q).

```
gap> Zero(GF(4));
0*Z(2)
gap> 0 in GF(4);
false
gap> Zero(Rationals);
0
gap> One(GF(4));
Z(2) ^0
gap> 1 in GF(4);
false
gap> One(Rationals);
1
```


Finite fields

To recognize elements in finite fields with a prime number of elements one uses the function Int.

```
gap> Elements(GF(5));
[0*Z(5), Z(5)^0, Z(5), Z(5)^2, Z(5)^3 ]
gap> Int(Z(5)^0);
1
gap> Int(Z(5) - 1);
2
gap> Int(Z(5)~2);
4
gap> Int(Z(5)^3);
3
```


An exercise on permutation polynomials

Prove that the map

$$
f: \mathbb{Z} / 8 \rightarrow \mathbb{Z} / 8, \quad f(x)=2 x^{2}+x
$$

defines a permutation on the ring $\mathbb{Z} / 8$. Can you write this permutation as a product of disjoint cycles?

Matrices

For us a matrix will be just a rectangular array of numbers. The size of a matrix can be obtained with DimensionsMat. Sometimes (for example if one has an integer matrix) the function Display shows matrices in a nice way.

```
gap> m := [[1,2,3],[4,5,6]];;
gap> Display(m);
[ [ 1, 2, 3 ],
    [4, 5, 6 ] ]
gap> m[1][1];
1
gap> m[1][2];
2
gap> m[2][1];
4
gap> DimensionsMat(m);
[2, 3]
```


Matrices

Let $v=(1,2,3)$ and $w=(0,5,-7)$ be row vectors of \mathbb{Q}^{3}. Let us check that $-5 v=(-5,-10,-15)$ and $2 v-w=(2,-1,13)$.

```
gap> v := [1,2,3];;
gap> w := [0,5,-7];;
gap> IsRowVector(v);
true
gap> IsRowVector(w);
true
gap> -5*v;
[ -5, -10, -15 ]
gap> 2*v-w;
[ 2, -1, 13 ]
```

We also check that the inner product between v and w is -11 :
gap> v*w;
-11

A very simple exercise with matrices

Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 2 \\
6 & 1 \\
0 & 2
\end{array}\right) .
$$

Compute $A^{3}, B C, C B, A+C B$ and $2 A-5 C B$.

Matrices

To construct a null matrix one uses the function NullMat. The identity is constructed with the function IdentityMat. To construct diagonal matrices one uses DiagonalMat.

```
gap> Display(NullMat(2,3));
[ [ 0, 0, 0 ],
    [ 0, 0, 0 ] ]
gap> Display(IdentityMat(3));
[ [ 1, 0, 0 ],
    [ 0, 1, 0 ],
    [ 0, 0, 1 ] ]
gap> Display(DiagonalMat([1,2]));
[ [ 1, 0 ],
    [ 0, 2 ] ]
```


Matrices

We know that matrix [i] [j] returns the (i, j)-element of our matrix. To extract submatrices from a matrix one uses

$$
\text { matrix\{rows\}\{columns\} }
$$

like in the following example:

```
gap> m := [\
> [1, 2, 3, 4, 5],\
> [6, 7, 8, 9, 3],\
> [3, 2, 1, 2, 4],\
> [7, 5, 3, 0, 0],\
> [0, 0, 0, 0, 1]];
gap> m{[1..3]}{[1..3]};
[ [ 1, 2, 3 ], [ 6, 7, 8 ], [ 3, 2, 1 ] ]
gap> m{[2,4,5]}{[1,3]};
[ [ 6, 8 ], [ 7, 3 ], [ 0, 0 ] ]
```


Matrices

It is possible to work with matrices with coefficients in arbitrary rings. Let us start working with matrices over the finite field of five elements:

```
gap> m := [[1,2,3],[3,2,1],[0,0,2]]*One(GF(5));
[ [ Z(5)^0, Z(5), Z(5)^3 ],
    [ Z(5)^3, Z(5), Z(5)^0 ],
    [ 0*Z(5), 0*Z(5), Z(5) ] ]
gap> Display(m);
    1 2 3
    3 1
    . . }
```


Matrices

Now let us work with 3×3 matrices with coefficients in the ring $\mathbb{Z} / 4$. Let us compute the identity of $M_{3}(\mathbb{Z} / 4)$:

```
gap> m := IdentityMat(3, ZmodnZ(4));;
gap> Display(m);
matrix over Integers mod 4:
[ [ 1, 0, 0 ],
    [ [ 0, 1, 0
```


Matrices

One uses the function Inverse to compute the inverse of an invertible (square) matrix. This function returns fail if the matrix is not invertible.

```
gap> m := [[1, -2, -1], [0, 1, 0], [1, -1, 0]];;
gap> Display(Inverse(m));
[ [ 0, 1, 1] ],
    [ 0, 1, 0 ],
    [ -1, -1, 1 ] ]
gap> Inverse([[1,0],[2,0]]);
fail
```

IsIdentityMat returns either true if the argument is the identity matrix or false otherwise.

```
gap> IsIdentityMat(m*Inverse(m));
true
```


Matrices

We use TransposedMat to compute the transpose of a matrix:

$$
\begin{aligned}
& \text { gap> m := [[1, -2, -1], [0, 1, 0], [1, -1, 0]];; } \\
& \text { gap> Display(TransposedMat(m)*m); }
\end{aligned}
$$

A tricky exercise with matrices

Compute the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
6 & 7 & 8
\end{array}\right) \in \mathbb{Q}^{3 \times 3}
$$

WARNING:

The function Eigenvectors returns generators of the eigenspaces, where $v \neq 0$ is an eigenvector of A with eigenvalue λ if and only if $v A=\lambda v$.

Let us start with basic GAP programming. Outline:

- Objects and variables
- Conditionals
- Functions
- Strings
- Lists
- Ranges
- Sets
- Loops

Objects and variables

An object is something that we can assign to a variable. So an object could be either a number, a string, a group, a field, an element of a group, a group homomorphism, a ring, a matrix, a vector space...

Objects and variables

To assign an object to a variable one uses the operator := as the following example shows:

```
gap> p := 32;;
gap> p;
32
gap> p = 32;
true
gap> p := p+1;;
gap> p;
33
gap> p = 32;
false
```


WARNING:

Don't forget that the symbols $=$ (conditional) and $:=$ (assignment operator) are different!

Objects and variables

What if I forgot to assign the result of a calculation for further use?
We can do the following:

```
gap> 2*(5+1)-6;
```

6
gap> $\mathrm{n}:=$ last;
6

One also has last2 and last3.

Conditionals

There are three very important operators: not, and, or. We also have comparison operators; for example the expression $x<>y$ returns true if x and y are different, and false otherwise.

```
gap> x := 20;; y := 10;;
gap> x <> y;
true
gap> x > y;
true
gap> (x > 0) or (x < y);
true
gap> (x > 0) and (x < y);
false
gap> (2*y < x);
false
gap> (2*y <= x);
true
gap> not (x < y);
true
```


Conditionals

The if statement allows one to execute statements depending on the value of some boolean expression.

```
gap> n := 10;;
gap> if n mod 2 = 0 then
> n := n/2;
> else
> n := ( n+1)/2;
> fi;
gap> n;
5
```

Better examples will appear soon, we need to use functions!

Functions

There are two ways of constructing functions. For example, to construct the map $x \mapsto x^{2}$ either we use the one-line definition

```
gap> square := x->x^2;
function( x ) ... end
or the classical
gap> square := function(x)
> return x^2;
> end;
function( x ) ... end
```

In both cases we will obtain the same result!

Functions

One can also define functions with no arguments.

```
gap> hi := function()
> Display("Hello world");
> end;
function( ) ... end
gap> hi();
Hello world
```


Functions

Let us write a function to compute the map

$$
f: n \mapsto \begin{cases}n^{3} & \text { si } n \equiv 0 \bmod 3 \\ n^{5} & \text { si } n \equiv 1 \bmod 3 \\ 0 & \text { otherwise }\end{cases}
$$

Functions

Here is the code and some experiments:

```
gap> f := function(n)
> if n mod 3 = 0 then
> return n^3;
> elif n mod 3=1 then
> return n^5;
> else
> return 0;
> fi;
> end;
function( n ) ... end
gap> f(10);
100000
gap> f(5);
O
gap> f(4);
1024
```


Functions

The Fibonacci sequence f_{n} is defined as $f_{1}=f_{2}=1$ and

$$
f_{n+1}=f_{n}+f_{n-1}
$$

for $n \geq 2$. The following function computes Fibonacci numbers:

```
gap> fibonacci := function(n)
> if n = 1 or n = 2 then
> return 1;
> else
> return fibonacci(n-1)+fibonacci(n-2);
> fi;
> end;
function( n ) ... end
gap> fibonacci(10);
55
```

Question: Can you compute f_{100} with this method?

